

Cloning ICOM Receivers

Using the ICOM IC-R2 Handheld
Scanner as an example

Data structures and computer
control information

Version 1.0 of 14 Sept 2001

by BlakkeKatte@yahoo.co.uk
http://uk.geocities.com/blakkekatte

http://uk.geocities.com/blakkekatte

 2

Cloning ICOM Receivers (using the ICOM IC-R2 Handheld Scanner as an
example.)
Table of Contents
Acknowledgements.. 3
Data Representations... 4

The ASCII Character Set.. 4
The ANSI Character Set... 4
Hexadecimal Numbers. .. 4
Binary Numbers.. 5
ASCII Represented Hexadecimal .. 5

Background to Cloning an ICOM Radio. ... 6
Background .. 6
The CI-V System .. 6
Understanding the Hardware Interface. .. 7
Icom OPC-478 Interface. ... 9
Icom CT-17 Interface... 9
Differences between the OPC-478 and CT-17 Interfaces. ... 10
Other designs.. 10
Communication Parameters. ... 11

Icom Command Language. .. 12
Commands Used when Cloning. ... 12
Transferring Data. ... 14
Example line of data .. 15
Calculating a Checksum. .. 16

Example Calculation:... 16
IC-R2 Memory Structure .. 18

Methodology .. 18
Accuracy and Completeness ... 18
Overall Structure... 19
0000 - 0C7F : Memory Channel Data. ... 19

Frequency Formats .. 21
Special Format – Broadcast band with 9kHz separation.. 21
CTCSS Tones Table .. 22

0C80-0DFF : Scan Edges. .. 23
0E10-0E5F : VFO (Band) Data. .. 23
0E60-0E6F : Common Parameters... 23
0E70-0E77 : Values on Start-up .. 25
0E80-0E87 : Values on Start-up .. 26
0E88-0E8F : Channel Mode Values... 26
0FA0-0FAF : User Comments .. 26
0FB0-0FBF : Icom Version Details ... 27

Appendix A : ICOM's ICF Disk File Format .. 28
Icom’s .ICF format .. 28
The First Two Lines. ... 28
ICF File Coding. ... 28

Appendix B - ASCII Table ... 30
Appendix C - ANSI Table .. 30

 3

Acknowledgements
I developing this document, I have made extensive use of resources from the
internet. I wish to acknowledge:

• = Bruce A Pope for his document “Everything you always wanted to know
about the IC-R10 that is not in the manual.”
(http://people.we.mediaone.net/baptpdc/r10/r10.htm). In that document,
Bruce describes his decoding of the Icom IC-R10 scanner.

• = Ekki Plicht (http://www.plicht.de/ekki) who maintains a site with a lot of

Icom programming material. Ekki has also written the CIVTest program
(http://www.plicht.de/ekki/software/civt.htm) that allows commands to be
sent to an ICOM radio and displays both the commands and the
responses from the radio.

• = Dave (AA6YQ) (http://www.ambersoft.com/Amateur_Radio/index.htm),

author of the CI-V Explorer program (http://www.qsl.net/civ_commander)
and other Icom computer control resources.

• = Goran Vlaski (http://www.digital-laboratory.de/) for his freeware ICR2

programming utility and his Icom Clone Utility that can back up and restore
the IC-R2 by storing clone files on disk.

• = Gommert Buysen (http://www.butel.com.nl) for his Advanced Radio

Control (ARC) program that can clone the IC-R2, and the iclone2 program
which can back up and restore the IC-R2 by storing clone files on disk.

• = Contributors to the IC-R2 discussion forum at

http://groups.yahoo.com/group/icomr2.

• = Icom for the DOS based software for programming the IC-R2, and their
1991 guide entitled “CI-V : Icom Communications Interface - V Reference
Manual”

• = Raihan Kibria (http://www.tu-darmstadt.de/~rkibria) for his frhed (Free Hex

Editor) program. This easy to use and free utility makes an easy task of
exploring, comparing and changing data files in either ASCII or Hex.

BlakkeKatte
September 2001

http://people.we.mediaone.net/baptpdc/r10/r10.htm
http://www.plicht.de/ekki
http://www.plicht.de/ekki/software/civt.htm
http://www.ambersoft.com/Amateur_Radio/index.htm
http://www.qsl.net/civ_commander
http://www.digital-laboratory.de/
http://www.butel.com.nl/
http://groups.yahoo.com/group/icomr2
http://www.tu-darmstadt.de/~rkibria

 4

Data Representations
In this document, data is represented in a variety of ways:

• = Characters are represented using the ASCII and ANSI character sets.
• = Numbers are represented in hexadecimal, ASCII represented

hexadecimal, or binary.

The ASCII Character Set
The ASCII table describes the American Standard Code for Information
Interchange, the basis of character sets used in most present-day computers.
US-ASCII uses only the lower seven bits (characters 0 to 127) to convey some
control codes, space, numbers, most basic punctuation, and unaccented letters
a-z and A-Z. Appendix B shows the ASCII Character set.

The ANSI Character Set
The ANSI character set (developed by the American National Standards Institute
- ANSI), is a standard extension of the ASCII character set. The table at
Appendix C shows characters 128-255 of the ANSI character set.

Hexadecimal Numbers.
Hexadecimal (Or "hex") numbers count in base 16 (decimal numbers count in
base 10). Hexadecimal numbers are represented using the digits 0-9, with their
usual meaning, plus the letters A-F (or a-f) to represent hexadecimal digits with
values of (decimal) 10 to 15. The right-most digit counts ones, the next counts
multiples of 16, then 16^2 = 256, etc.

There are many conventions for distinguishing hexadecimal numbers from
decimal or other bases in programs. In the C programming language for
example, the prefix "0x" is used, e.g. 0x694A11. In Visual Basic the prefix "&H"
is used, e.g. &H3F6. In this document the prefix "$" is used, e.g. $3AF.

One of the advantages of using hexadecimal numbers is that two characters
represent one byte of data (an 8 bit number). For example 159 (decimal) is
represented as $9F.

In this document, numbers are usually represented in a hexadecimal format:
Hexadecimal
number

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F $10

Decimal
equivalent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 5

Binary Numbers
A number representation consisting of zeros and ones used by practically all
computers because of its ease of implementation using digital electronics and
Boolean algebra.

A bit is a binary digit. A single one or zero in a binary number.

A byte is eight bits. A byte typically holds one character. Two hexadecimal
characters can represent the contents of a byte.

A nibble is half a byte. Since a byte is eight bits, a nibble is four bits. One
hexadecimal character can represent the contents of one nibble.

ASCII Represented Hexadecimal
A data scheme where two ASCII characters are used to represent one byte of
data. For example, one data byte containing the hexadecimal value $7E (126
Decimal, or 1111110 binary) would be represented by the two ASCII characters
'7E'. The value 3 is represented by the two ASCII characters '03'.

 6

Background to Cloning an ICOM Radio.

Background
Icom equipment has provision for computer control and management.

The full implementation can be used for two purposes:

• = to 'clone' the configuration of a radio. That is, to set up the operational
parameters of a radio (frequencies, modes, scanning rates etc) either by
copying them from another radio of the same type (cloning) or by using
software to send them to the radio. This process is called 'cloning' the
radio. It generally involves turning the radio off after the cloning process is
complete, and turning it back on to reinitialise.

• = to control the radio while it is operating e.g. to tell the radio to change to
another frequency or mode, or to obtain details from the radio such as
received signal strength.

The Icom IC-R2 receiver only allows for 'cloning' by computer. It does not allow
for operational control.

The CI-V System
The current ICOM standard system for communication between computer and
radio is called the ICOM Computer Interface Version 5. This is commonly called
the CI-V interface standard.

The CI-V system allows for a computer to communicate, through it's serial
communications port, to an Icom radio.

In its full implementation, the CI-V system allows up to four radios to be
controlled from the same cable and computer interface. Icom has developed the
CT-17 interface to allow up to four radios to be connected to one computer.

Cloning uses the same protocol, but it is assumed that there will only be one
radio communicating with one computer (or two radios communicating with each
other) and the interface hardware can be simpler. Often the hardware is installed
inside the plug for connection to the computer, with the hardware drawing its
power from the computer's serial port. Icom has developed the OPC-478
interface for cloning from a computer.

 7

Understanding the Hardware Interface.
An interface is needed to convert between the low voltage TTL transistor logic of
the IC-R2 to the higher voltage levels of the RS-232 computer serial
communications interface.

Hardware required for communication between radio and PC is described below.
Circuits are provided for the two ICOM Interface units:

• = the CT-17 interface used for remote control;
• = the OPC-478 interface used for cloning

These devices perform similar functions, but the plugs for connection to the radio
are wired differently.

The Icom CT-17 interface is based on the Maxim Max232 RS-232 Line
Driver/Receiver (http://pdfserv.maxim-ic.com/arpdf/1798.pdf). The following
block diagram of the CT-17 interface shows how the RS-232 and TTL voltages
are matched together, and shows the flow of data through the device.

http://pdfserv.maxim-ic.com/arpdf/1798.pdf

 8

This diagram clearly shows how data transmitted from the computer is reflected
back to the computer for monitoring of the transmission. The diagram also
shows that radio data is also reflected back to the radio so that collisions can be
detected.

Because the transmit-data line and the receive-data line are connected together,
the CI-V interface is connected in a wire-OR configuration. When the computer
transmits a command, the command is automatically echoed back as received
data, followed by the radio's response to the command, if any. For example, if an
eleven-byte command is transmitted to a device on the cable, and a six-byte
response is sent, the computer will receive a total of seventeen bytes (11+6=17).

This configuration allows devices on the cable to monitor their own transmissions
in order to detect interface collisions.

A collision occurs when two or more devices transmit simultaneously. If a
collision occurs, the command must be re-transmitted. The radio or computer
that is transmitting reads its own transmissions back from the communications
cable. If it detects that another device has transmitted at the same time (i.e.
there has been a collision) the radio or computer stops transmitting, listens to
make sure that there are no other data transmissions on the cable, transmits a
jamming code (5 characters of value $FC), and retransmits the original
command.

Question: does the cloning system actually follow this part of the protocol? The
cloning system seems to assume that no more than two devices will be on the
cable at any one time and the protocol seems to minimise the possibility of
collisions occurring during cloning

 9

Icom OPC-478 Interface.

Following is the Icom design for the OPC-478 interface used for cloning. Note
that this interface derives its power from the RS-232 serial port of the connected
computer.

Source : http://www.lumanet.org/pages/rogerwilco/r_cci.gif.
This version adds common part numbers to the original ICOM design.

Icom CT-17 Interface.
Following is the Icom design for the CT-17 interface used for computer control of
Icom equipment. This interface allows up to four devices to be controlled by one
computer.

This example is taken from the Icom CI-V spec 1986 (source http://www.plicht.de)

http://www.lumanet.org/pages/rogerwilco/r_cci.gif

 10

Differences between the OPC-478 and CT-17 Interfaces.
These two items are electrically similar, except that they terminate in plugs that
are wired differently. The OPC-478 cloning cable generally plugs into the
earphone socket of the radio. The CT-17 serial cable generally plugs into a
separate data socket. The difference in the plug wiring is:

Plug OPC 478 Cloning Cable CT-17 Serial Cable
Tip unused CI-V data
Centre CI-V data unused
Ring Ground Ground

A Tip. An OPC-478 cloning cable with a stereo plug can be converted for use as
a serial cable by using a mono plug to stereo socket converter. This allows
stereo earphones to be used in a mono socket. It effectively connects both the
tip and the centre of the plug together, so that a signal applied to the tip of the
plug, also appears on the centre of the stereo plug. If more than one device is to
be connected, external cabling such as common 3.5mm Y-adapters can be used
to connect multiple devices.

Other designs.
There are a number of sites on the internet that provide designs and construction
details of RS232 to IC-R2 interfaces. See for example the collection of links at
http://www.plicht.de/ekki/civ/index.html.

An interface similar to the CT-17 is published each year in the ARRL Handbook
(Chapter 22 in the 2001 Handbook). The original design was published in 1993
in the ARRL QST magazine (http://www.arrl.org/tis/info/pdf/9302037.pdf) (copy at
http://groups.yahoo.com/group/Icom_R-10/files/9302037.pdf) but is repeated
each year in the Handbook. The article also gives a good summary of the RS-
232 protocol and associated communications issues. The printed circuit board
layout for the design is at http://www.arrl.org/notes/hbk-templates/iface.pdf.

http://www.plicht.de/ekki/civ/index.html
http://www.arrl.org/tis/info/pdf/9302037.pdf
http://groups.yahoo.com/group/Icom_R-10/files/9302037.pdf
http://www.arrl.org/notes/hbk-templates/iface.pdf

 11

Communication Parameters.
Following are the serial communication parameters for the Icom CI-V system:

Parameter Value
Start bits 1
Data bits 8
Stop bits 1
Parity None
Data rate 9600 (configurable). Early equipment

had the baud rate fixed at 2400 baud.

Q is the IC-R2 configurable?

Handshaking None
(NB: RTS and CTS are tied together at
the computer end)

 12

Icom Command Language.
Icom uses a simple command language to communicate between computer and
radio. The basic structure of a command is

$FE $FE to-addr fm-addr Cmd SubCmd ---Data--- $FD

$FE 1 byte the preamble (sent twice)
to-addr 1 byte the address of the device to which this command is

being sent
fm-addr 1 byte the address of the sender of the command
Cmd 1 byte the code for the command to be followed
SubCmd 1 byte Optional. A sub-command for some commands
Data variable the data to be processed
$FD 1 byte the postamble, sent once.

In the case of the IC-R2, the following addresses are used:

Computer $EF
IC-R2 $EE

Question: are these generic cloning addresses? If so, there are issues with
cloning two radios on the same cable. Do the ICr3 use the same address for
cloning? Does the IC-R10 have different addresses for cloning and control?
Also make sure order of addresses is correct, and that examples are consistent.

Commands Used when Cloning.

The subset of the CI-V command set used for cloning is:

$E0 Interrogate radio for

version/model/user
comment

$FE $FE $EE $EF $E0 <model data> $FD

For the IC-R2, the Icom provided software will send
$21 $27 $00 $00 if it is unsure of the model number.
The software subsequently uses the value returned
from the radio (see command $E1).

For my version of the IC-R2 the model data is $21
$27 $00 $01.

(A model code of $00 $00 $00 $00 can be used in
this command. If it is used, any radio will respond

 13

with its actual model number)
$E1 Returned data (from

radio)
$FE $FE $EF $EE $E1 <model data><user
data><some other data>$FD

The model data returned from the radio should be
used in all subsequent commands.

The user data returned from the radio is the user
comment field loaded into memory when cloning
(see details under "Memory Structure" later in this
document.)

Other data in my model returns ($0A $80 $01).
Goran Vlaski in his software shows this as
representing internal switch settings and the state of
mods and fixes)

$E2 Set Radio into
“Clone Out” mode.
(Memory Read)

$FE $FE $EE $EF $E2 <model data> $FD

The values for the model data should always be
those returned by the radio.

The radio responds by returning all of its memory
data - see command $E4 for the format.

$E3 Set radio into “Clone
In” Mode.
(Memory Write)

$FE $FE $EE $EF $E3 <model data> $FD

The values for the model data should always be
those returned by the radio.

The radio displays "clone in" on its LCD.

This command must be followed by valid memory
data for uploading - see command $E4 for the
format.

$E4 Payload data.

(Can be from
computer to radio to
be written to
memory, or from
radio to computer.)

$FE $FE $EE $EF $E4 <line of data> $FD (from
computer to radio)

$FE $FE $EF $EE $E4 <line of data> $FD (from
radio to computer)

The line of data contains the memory address, the
payload length, the payload data, a checksum.

The format of a line of data transmitted with this
command is discussed in detail later in this paper.

 14

$E5 Termination code.

Send to radio at end
of cloning memory
write operation

$FE $FE $EE $EF $E5 <some data> $FD

The data in this command decodes to 'Icom Inc.'

This command must be sent or the cloning
operation will terminate with an error.

$E6 Termination Result.

Sent by radio at end
of cloning memory
write operation

$FE $FE $EF $EE $E6 $00 $FD

This is an acknowledgement from the radio giving
the termination status of the cloning operation.
$00 : Completed with no errors
$01 : Completed with errors

If the operation was unsuccessful, the radio will
display CL Err on its LCD, and will have to be
powered off to recover. On restart it reinitialises in a
minimal default configuration.

Transferring Data.
The cloning process transfers data directly to the memory of the radio. The data
transfer command provides details of the memory locations and data to be
transferred.

The command that transfers data to or from a radio has a simple structure. The
data is transferred using a series of commands, each with the same basic layout.

command preamble $FE $FE

code to communicate
from PC to radio

$EE $EF

Command
sequence to
load data from
the computer
into radio
memory

command code for
data transfer

$E4

Starting Memory Address 2 ASCII represented
hexadecimal numbers
(4 characters)

Number of bytes of data to be
loaded

1 ASCII represented
hexadecimal number
(2 characters

Data

Data to be loaded ASCII represented
hexadecimal numbers.
(2 characters per
number)

 15

 Checksum 1 ASCII represented
hexadecimal number.
(2 characters)

Terminating
command byte
showing data
transfer is
complete.

One hexadecimal number with the value $FD.

Representation of the data to be transferred
Data being transferred is encoded in ASCII represented hexadecimal. Two
ASCII characters are used to represent one byte of data.

Representing a number
Decimal number 249
Changed to
hexadecimal

$F9

converted to characters 'F' '9' F9 would be seen in a word processor

Representing Characters
Character string Icom
Changed to
hexadecimal string
('I' is the 49th letter in
the ASCII table, 'c' is
the 63rd, o is the 6F
th, m is the 6D th)

$49 $63 $6F $6D

Converted to
characters

4 9 6 3 6 F 6 D as seen in word
processor

Example line of data

An Icom command frame transferring data from computer to radio looks like this:

Line of data þþîïä00301012640000000080061266000000008006C6ý

The above line contains this information:

command preamble þþ $FE $FE

code to communicate
from PC to radio

îï $EE $EF

Command
sequence to
load data from
the computer
into radio
memory

command code for
data transfer

ä $E4

 16

Starting memory address (e.g. 30
Hex)

0030

Length of data (e.g. 10 Hex or 16
decimal)

10

Data (32 characters representing
16 bytes of data)

12640000000080061266000000008006

Checksum C6
Terminating command byte
showing data is complete.

ý $FD

Calculating a Checksum.
A checksum is used to trap errors in the data transmission. The transmitter
calculates the checksum on the data it sends. The receiver recalculates the
checksum on the data it receives. If part of the data is corrupted in transmission,
the checksums will be different, and the receiver knows there has been an error.
(If an error is detected, the radio stops the cloning operation and displays ‘CL Err’
(or Clone Error) on its LCD. The radio has to be reset to continue.

The CI-V system uses a very basic ‘twos-complement’ checksum. It will trap
basic errors, but some more complex errors may not be detected.

(Twos complement is a number system used in some computers to represent
negative numbers in binary. Each bit of the number is inverted (zeros are
replaced with ones and vice versa, and then one (000...0001) is added (ignoring
overflow)

Example Calculation:

Using logical operations on binary numbers, the checksum calculation looks like
this.
Address,
payload
length, and
data divided
into 2 digit
hex numbers

00 30 10 12 64 00 00 00 00 80 06 12 66 00 00 00
00 80 06

Total of all the
above 2 digit
hex numbers.

$023A 0000 0010 0011 1010

Get the ones
complement
inverse

$023A XOR $FFFF = $FDC5 1111 1101 1100 0101

Add one to
get the twos
complement

$FDC5 + 1 = $FDC6 1111 1101 1100 0110

 17

The
checksum is
two bytes
long. We
only need one
byte (eight
bits). Mask
out the high
end byte

$FDC6 AND $00FF = $C6 0000 0000 1100 0110

Checksum $C6 1100 0110

 18

IC-R2 Memory Structure

Methodology
To find out the memory structure of the IC-R2, the following methods were used:

• = The official ICOM CS-R2 software was used. A copy was kept of a basic
.ICF file produced by that software. Using the program, one change was
made to the configuration of the radio, and the changed configuration was
saved in a second .ICF file. The two files were compared and changes
identified. This was repeated for each function provided by the software.

• = A similar procedure was followed using software produced by others. In
this case the changes were uploaded to the radio to confirm that the
software was in fact producing valid results.

• = An analysis of .ICF files also identified areas of data which appeared to
have a useful purpose, but which were not being altered by any of the
software packages. By guessing the format, making changes to the data,
and uploading the altered data into the radio, it is sometimes possible to
find the purpose of the data fields by finding the changed behaviour of the
radio.

It can be seen that this is a time consuming, laborious exercise that requires a lot
of attention to detail.

Accuracy and Completeness
Because of the process used, the memory table detailed in this document is not
guaranteed to be error free, and anyone relying on the data should confirm its
accuracy.

There are also a number of areas in memory that appear to be used by the radio,
but which have a purpose that has not been identified. The table should not be
regarded as complete.

 19

Overall Structure

Memory
Locations

Hex Decimal

Length
Bytes

Data Comments

0000-
0C7F

0-3199 3200 Memory
Channel Data

400 memory
channels, of 8
bytes each

0C80-
0DFF

3200 -
3583

384 Scan Edges 24 pairs Scan
Edges of 16
bytes for each
pair

0E00-
0E0F

3584 –
3599

16 Unused?

0E10-
0E5F

3600 –
3679

80 VFO data 10 VFO settings.

0E60-
0E6F

3680 –
3695

16 Common
parameters

0E70-
0E77

3696 –
3703

16 Values at
startup

0E78-
0E7F

3704 –
3711

8 Unknown?

0E80-
0E87

3712 –
3719

1 Common
Parameters

0E88-
0E8F

3720 -
3727

8 skip values for
channel mode

0E90-
0F9F

3728 –
3999

272 Unused?

0FA0-
0FAF

4000 –
4015

16 Comments User comment

0FB0-
0FBF

4016 –
4031

16 Icom Version
details

0000 - 0C7F : Memory Channel Data.
The IC-R2 has 8 memory banks with 50 channels in each bank. This gives a
total of 400 memory channels to be stored by the IC-R2. Details of the memory
channels are the first thing stored in the R2. Each memory channel takes up 8
bytes of memory for storage. Storage is in 4 bit units or ‘nibbles’.

The memory does not divide channels into banks - only the 400 channels are
stored. Only the programs used by the radio distinguish the banks.

 20

The same structure is used for each edge of a Scan Edge pair and for VFO data.

The structure is as follows.

Bytes Nibbles Total Purpose Values
0-2 0-5 24 bits Frequency See separate note on

frequency format
3 6 4 bits Duplex 0 = Simplex

1 = Simplex
2 = -Duplex
3 = +Duplex

3-5- 7-11 20 bits Offset See separate notes on
frequency format

6 12 Leftmost 2
bits of
nibble 12 (a
total of 2
bits)

Mode 0=FM (i.e. 00xx)
1=WFM i.e. (01xx)
2=AM (i.e. 10xx)

6 12-13 Rightmost
2 bits of
nibble 12
and all of
nibble 13 (a
total of 6
bits)

CTCSS Tone There are 50 CTCSS
Tones.
Range of values is $0 to
$31 (0-49 decimal)
$0 = xx00 0000
$31 = xx11 0001
See separate table for list
of preset tones and their
data values)

7 14 leftmost 2
bits

Program Skip 0=Scan (00xx)
1=Program Skip (01xx)
2=Scan Skip (10xx)

7 14 Rightmost
2 bits

Tone Squelch 0=off (xx00)
1=on (xx01)

7 15 Rightmost
4 bits

Tuning Step There are 10 tuning steps
0=5 kHz
1=6.25 kHz
2=10 kHz
3=12.5 kHz
4=15 kHz
5=20 kHz
6=25 kHz
7=30 kHz
8=50 kHz
9=100 kHz
F=9kHz in AM band ?
Auto????

 21

Frequency Formats
Frequencies and offsets are stored in kilohertz. Resolution and rounding? The
Icom CSR2 software shows 5 places after the decimal point)

As an example, 123456 represents 123456 kHz or 123.456 MHz.

Frequency formats are in ASCII represented hexadecimal format where the
leading two decimal digits will sometimes be represented by one hexadecimal
character.

Frequencies are stored in 6 nibbles(3 bytes). Offsets are stored in 5 nibbles.

For frequecies:

• = 1200.000 MHz is stored as C00000
• = 200.000 MHz is stored as 200000
• = 1,234.567 MHz is stored as C34567

For Offsets:

• = 200.000 MHz is stored as C0000
• = 20.000 MHz is stored as 20000
• = 123456 MHz is stored as C3456.

Special Format – Broadcast band with 9kHz separation.

Some models accommodate the fact that, in some countries, stations in the
broadcast band have a separation of 9kHz. Other countries provide for
broadcast band separation of 10 kHz. The ability to handle 9 kHz separation is
programmed into the IC-R2 in an unusual way.

The frequencies in the broadcast band range of 0.495 MHz to 1.620 MHz have a
different format:

Frequency Format Calculation
0.495 00FFFF 0.495+0*0.009
0.504 01FFFF 0.495+1*0.009
0.513 02FFFF 0.495+2*0.009
…. …. ….
0.576 09FFFF 0.495+9*0.009
0.585. 0AFFFF 0.495+10*0.009
0.594 0BFFFF 0.495+11*0.009
…. …. ….
1.602 7BFFFF 0.495+123*0.009

 22

1.611 7CFFFF 0.495+124*0.009
1.620 7DFFFF 0.495+125*0.009

This frequency format occupies 6 digits. The mode must be fixed as AM.
Duplex, Offset, Tone Squelch, CTCSS Tone are not available. Only Scan
Skip can be programmed.

Following is an example (spaces added for clarity).
13FFFF000000880F 27FFFF000000880F
This shows two stations 0.666 (13 hex [i.e. 19 decimal] * 0.009 + 0.495) and
0.846 (27 hex [i.e. 39 decimal] * 0.009 + 0.495). It shows Duplex set to 0,
Offset frequency set to 0, An arbitrary CTCSS tone (no 8), tuning step set to
F, mode set to AM, and the scan option set to ‘scan’.

CTCSS Tones Table

Data Value CTCSS Tone Data Value CTCSS Tone
0 67.0 25 156.7
1 69.3 26 159.8
2 71.9 27 162.2
3 74.4 28 165.5
4 77.0 29 167.9
5 79.7 30 171.3
6 82.5 31 173.8
7 85.4 32 177.3
8 88.5 33 179.9
9 91.5 34 183.5
10 94.8 35 186.2
11 97.4 36 189.9
12 100.0 37 192.8
13 103.5 38 196.6
14 107.2 39 199.5
15 110.9 40 203.5
16 114.8 41 206.5
17 118.8 42 210.7
18 123.0 43 218.1
19 127.3 44 225.7
20 131.8 45 229.1
21 136.5 46 233.6
22 141.3 47 241.8
23 146.2 48 250.3
24 151.4 49 254.1

 23

0C80-0DFF : Scan Edges.
There are 24 pairs of scan edges. Each pair has an upper frequency limit or edge
(with all details), and a lower frequency limit (or edge). Each edge has the same
structure as a memory frequency channel.

0E10-0E5F : VFO (Band) Data.
Each VFO element has the same structure as a memory frequency channel.

VFO
(in CSR2
software)

VFO
(in IC-

R2
manual)

VFO
Goran's
program

Frequency
Range of VFO

Default
Frequency on

Radio
Initialisation

1 0.495 1.6 0.495 - 1.620
MHz

5 5 5 1.625 - 29.995
MHz

50 51 51 30 - 107.995 MHz
 76

Air 118 118 108 - 135.995
MHz

VHF 145 145 136 - 255.095
MHz

300 370 370 255.1 - 382.095
MHz

UHF 430 430 382.1 - 769.795
MHz

800 850 850 769.8 - 960.095
MHz

1200 1295 1295 960.1 - 1309.995
MHz

NOTE: To be resolved. The documentation gives 9 VFO slots. The data file has
10 slots for VFO data. Goran Vlaski's program shows 10 VFO slots.

0E60-0E6F : Common Parameters

Byte Total Bytes Purpose Values
$0E60 1 Dial Select 0=100 kHz

1=1 MHz
2=10 MHz

$0E61 1 Priority 0=off
1=on
2=bell

 24

Question: where are the
details of the priority
frequency held?

$0E62 1 Scan Resume 0 = 0 sec
1=1 sec
 …..
5=5 sec
6=Hold

$0E63 1 Scan Pause 0=2 sec
1=4 sec
 …
9=20 sec
A=hold

$0E64 1 Program skip 0=off
1=on

$0E65 1 Bank scan 0=bank
1=all

$0E66 1 Expand Mode 0=off
1=on

$0E67 1 Channel mode This also sets values at OE
80 byte 2
0=off
1=on
(in both locations)

$0E68 1 Operation
Beep

0=off
1= on

$0E69 1 Display
backlight

0=off
1=on
2=auto

$0E6A 1 Auto Power Off 0=off
1=30 min
2=60 min
3=90 min
4=120 min

$0E6B 1 Power Save 0=off
1=auto

$0E6C 1 Monitor Mode 0=Push
1=Hold

$0E6D 1 Dial Speed 0=off
1=on

$0E6E 1 Scan Edge 0=P0
1=P1
 …..
18=P24
19=Band
1A=All

 25

$0E6F 1 Lock Mode 0=Normal
1=No SQL
2=No Vol
3=All

0E70-0E77 : Values on Start-up

Byte Total Bytes Purpose Values
$0E70 current menu

option (The
Menu option
which will
appear when
menu is next
called up)

0=skip
1=Dsel
2=TSQL
3=Tone
4=Dup
5=Offset
6=Resume
7=Pause
8=prio
9=Beep
A=Light
B=AP off
C=Psave
D=Moni
E=Speed
F=Lock
10=CH
11=Expand

$0E71 VFO to use
(This relates to
the ‘band’ to
use’)

Bottom edge of the ‘band’
0=0.495 MHz
1=1.620MHz
2=5
3=51
4=118
5=145
6=370
7=430
8=850
9=1295.0 MHz
A=use Channel Mode

$0E72 Channel
number

1=1
……
3D = 62

$0E73 Squelch Level 1=Auto
2=Level 1

 26

……
A=Level 9

$0E74 Memory
Channel

some error here 16=22,
18=24, 18=399(18F)

$0E75
$0E76
$0E77

0E80-0E87 : Values on Start-up
Byte Total Bytes Purpose Values

$0E80 top attenuator 2=off, 6=on (0=off, 4=on)
What is correct figure here?

 bottom Operation on
Power Up

Normal=0
Scan Tone=1
Normal Scan=2

$0E81 top Memory or
VFO

8=mem, 0=VFO (set to 0 if in
channel mode

 bottom Ch Mode 0=off, 1=on
$0E82
$0E83
$0E84
$0E85
$0E86
$0E87

0E88-0E8F : Channel Mode Values
Byte Total Bits Purpose Values

$0E98
-
$0E8F

64 TV Channel
Skip

1 Bit per channel
0=off, 1=on

Is this correct????????

Goran's program shows
only 62 channels

0FA0-0FAF : User Comments
These locations contain 16 characters of user comments in text. For example:
55 73 65 72 20 43 6F 6D 6D 65 6E 74 20 31 32 33
U s e r C o m m e n t 1 2 3

 27

0FB0-0FBF : Icom Version Details
These memory locations contain the following fixed data that is not amended.
49 63 6F 6D 43 6C 6F 6E 65 46 6F 72 6D 61 74 33
I c o m C l o n e F o r m a t 3

--00--

 28

Appendix A : ICOM's ICF Disk File Format

Icom’s .ICF format
Icom provides a DOS software program (CSR2) to load data into, and download
data from the IC-R2. This program stores data files in a .ICF Format. This
format is based on the format sent to the IC-R2, with some differences:

• = The file is a text file. That is, it contains lines of ASCII characters, with
each line being terminated with a Carriage Return and Line Feed
combination.

• = There are two extra lines at the beginning. The first contains some data
which identifies the equipment model, and is used in the set up of the data
transfer process. The second line contains user comments that are read
by the Icom CSR2 program.

• = The leading command bytes are not included
• = The checksum is not included
• = The terminating command byte is not included
• = The data is encoded into a character based format. This encoding has to

be removed before the data can be used

The First Two Lines.
The first line in the file contains the model number returned by the radio. For
example:
First Line of ICF File 21270001

The second line contains a # sign followed by the user comments contained in
the radio. The ICOM programs use this to provide a description when opening
the file. An example second line is:
Second Line of ICF File #User Comment

Both these lines are in normal, unencoded, text.

ICF File Coding.
The remainder of the ICF file contains the memory data that would be sent to (or
received from) the radio. Only the starting memory location, length of data, and
the data itself is recorded. The checksum is not recorded in an ICF file. The
data in an ICF File is encoded using a simple coding system. Lines in an .ICF file
look like this:

Encoded .ICF data ggjghghimkggggggggoggmhimmggggggggoggm
Hex data after encoding
removed (and with the
Carriage Return and Line
Feed removed)

00301012640000000080061266000000008006

 29

Removing the encoding is simple, as the following example shows.

The letter ‘g’ is the 103rd character in the ASCII character set. Deducting 55 from
that leaves 48. The 48th character in the ASCII character set is the number ‘0’.
Thus, ‘g’ represents ‘0’. ‘h’ represents ‘1’ and so on.

code letter g
position in ASCII table 103
subtract 55 103 - 55 = 48
Character at 48th position in ASCII
table

'0'

code letter }
position in ASCII table 125
subtract 55 125 - 55 = 70
Character at 70th position in ASCII
table

'F'

As hexadecimal digits represent the data transferred to the IC-R2, only the 16
hexadecimal digits need to be decoded. The following table lists the code letters
from the file, and the hexadecimal digits they represent.

code hex

digit
 code hex

digit
g 0 o 8
h 1 p 9
i 2 x A
j 3 y B
k 4 z C
l 5 { D
m 6 | E
n 7 } F

--00--

 30

Appendix B - ASCII Table
Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex
(nul) 0 0x00 (sp) 32 0x20 @ 64 0x40 ` 96 0x60
(soh) 1 0x01 ! 33 0x21 A 65 0x41 a 97 0x61
(stx) 2 0x02 " 34 0x22 B 66 0x42 b 98 0x62
(etx) 3 0x03 # 35 0x23 C 67 0x43 c 99 0x63
(eot) 4 0x04 $ 36 0x24 D 68 0x44 d 100 0x64
(enq) 5 0x05 % 37 0x25 E 69 0x45 e 101 0x65
(ack) 6 0x06 & 38 0x26 F 70 0x46 f 102 0x66
(bel) 7 0x07 ' 39 0x27 G 71 0x47 g 103 0x67
(bs) 8 0x08 (40 0x28 H 72 0x48 h 104 0x68
(ht) 9 0x09) 41 0x29 I 73 0x49 i 105 0x69
(nl) 10 0x0a * 42 0x2a J 74 0x4a j 106 0x6a
(vt) 11 0x0b + 43 0x2b K 75 0x4b k 107 0x6b
(np) 12 0x0c , 44 0x2c L 76 0x4c l 108 0x6c
(cr) 13 0x0d - 45 0x2d M 77 0x4d m 109 0x6d
(so) 14 0x0e . 46 0x2e N 78 0x4e n 110 0x6e
(si) 15 0x0f / 47 0x2f O 79 0x4f o 111 0x6f
(dle) 16 0x10 0 48 0x30 P 80 0x50 p 112 0x70
(dc1) 17 0x11 1 49 0x31 Q 81 0x51 q 113 0x71
(dc2) 18 0x12 2 50 0x32 R 82 0x52 r 114 0x72
(dc3) 19 0x13 3 51 0x33 S 83 0x53 s 115 0x73
(dc4) 20 0x14 4 52 0x34 T 84 0x54 t 116 0x74
(nak) 21 0x15 5 53 0x35 U 85 0x55 u 117 0x75
(syn) 22 0x16 6 54 0x36 V 86 0x56 v 118 0x76
(etb) 23 0x17 7 55 0x37 W 87 0x57 w 119 0x77
(can) 24 0x18 8 56 0x38 X 88 0x58 x 120 0x78
(em) 25 0x19 9 57 0x39 Y 89 0x59 y 121 0x79
(sub) 26 0x1a : 58 0x3a Z 90 0x5a z 122 0x7a
(esc) 27 0x1b ; 59 0x3b [91 0x5b { 123 0x7b
(fs) 28 0x1c < 60 0x3c \ 92 0x5c | 124 0x7c
(gs) 29 0x1d = 61 0x3d] 93 0x5d } 125 0x7d
(rs) 30 0x1e > 62 0x3e ^ 94 0x5e ~ 126 0x7e
(us) 31 0x1f ? 63 0x3f _ 95 0x5f (del) 127 0x7f

Appendix C - ANSI Table
Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex

€ 128 80 Ÿ 160 A0 À 192 CO à 224 E0
� 129 81 161 A1 Á 193 C1 á 225 E1
‚ 130 82 ¡ 162 A2 Â 194 C2 â 226 E2
ƒ 131 83 ¢ 163 A3 Ã 195 C3 ã 227 E3
„ 132 84 £ 164 A4 Ä 196 C4 ä 228 E4
… 133 85 ¤ 165 A5 Å 197 C5 å 229 E5
† 134 86 ¥ 166 A6 Æ 198 C6 æ 230 E6
‡ 135 87 ¦ 167 A7 Ç 199 C7 ç 231 E7
ˆ 136 88 § 168 A8 È 200 C8 è 232 E8

‰ 137 89 ¨ 169 A9 É 201 C9 é 233 E9
Š 138 8A © 170 AA Ê 202 CA ê 234 EA

 31

‹ 139 8B ª 171 AB Ë 203 CB ë 235 EB
Œ 140 8C « 172 AC Ì 204 CC ì 236 EC
� 141 8D ¬ 173 AD Í 205 CD í 237 ED
Ž 142 8E 174 AE Î 206 CE î 238 EE
� 143 8F ® 175 AF Ï 207 CF ï 239 EF
� 144 90 ¯ 176 BO Ð 208 D0 ð 240 F0
‘ 145 91 ° 177 B1 Ñ 209 D1 ñ 241 F1
’ 146 92 ± 178 B2 Ò 210 D2 ò 242 F2
“ 147 93 ² 179 B3 Ó 211 D3 ó 243 F3
” 148 94 ³ 180 B4 Ô 212 D4 ô 244 F4
• 149 95 ´ 181 B5 Õ 213 D5 õ 245 F5
– 150 96 µ 182 B6 Ö 214 D6 ö 246 F6
— 151 97 ¶ 183 B7 × 215 D7 ÷ 247 F7
˜ 152 98 · 184 B8 Ø 216 D8 ø 248 F8
™ 153 99 ¸ 185 B9 Ù 217 D9 ù 249 F9
š 154 9A ¹ 186 BA Ú 218 DA ú 250 FA
› 155 9B º 187 BB Û 219 DB û 251 FB
œ 156 9C » 188 BC Ü 220 DC ü 252 FC
� 157 9D ¼ 189 BD Ý 221 DD ý 253 FD
ž 158 9E ½ 190 BE Þ 222 DE þ 254 FE
Ÿ 159 9F ¾ 191 BF ß 223 DF ÿ 255 FF

	Acknowledgements
	Data Representations
	The ASCII Character Set
	The ANSI Character Set
	Hexadecimal Numbers.
	Binary Numbers
	ASCII Represented Hexadecimal

	Background to Cloning an ICOM Radio.
	Background
	The CI-V System
	Understanding the Hardware Interface.
	Icom OPC-478 Interface.
	Icom CT-17 Interface.
	Differences between the OPC-478 and CT-17 Interfaces.
	Other designs.
	Communication Parameters.

	Icom Command Language.
	Commands Used when Cloning.
	Transferring Data.
	Example line of data
	Calculating a Checksum.
	Example Calculation:

	IC-R2 Memory Structure
	Methodology
	Accuracy and Completeness
	Overall Structure
	0000 - 0C7F : Memory Channel Data.
	Frequency Formats
	Special Format – Broadcast band with 9kHz separation.
	Calculation

	CTCSS Tones Table

	0C80-0DFF : Scan Edges.
	0E10-0E5F : VFO (Band) Data.
	0E60-0E6F : Common Parameters
	0E70-0E77 : Values on Start-up
	0E80-0E87 : Values on Start-up
	0E88-0E8F : Channel Mode Values
	0FA0-0FAF : User Comments
	0FB0-0FBF : Icom Version Details

	Appendix A : ICOM's ICF Disk File Format
	Icom’s .ICF format
	The First Two Lines.
	ICF File Coding.

	Appendix B - ASCII Table
	Appendix C - ANSI Table

