

Microsoft Java Virtual Machine

Migration Guide for
Developers

Version 2.1

March 26, 2004

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed
as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted
to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented
after the date of publication.

This guide is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO
THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by
any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, Visual J#, Visual J++, Visual J#, Visual C#, ActiveX, JScript, Visual Basic and
Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

 3

Contents
1 ... 5

Overview... 5
Intended Audience.. 5

Knowledge Prerequisites .. 5
How to Use This Solution Guide... 6
Why a Transition Is Needed ... 7
Transition Options Available ... 7
Migrate to .NET... 8

Visual J# vs. Visual C#.. 8
Microsoft Product Support Services ... 9

2 ... 10
Migrate to .NET Using Visual J# and J# Browser Controls... 10

Migrating J++ Applications with the Visual J# Upgrade Wizard ... 10
Migrating Java Applets with J# Browser Controls .. 11

Compiling Java Applets to J# Browser Controls... 11
Updating the HTML Page to use J# Browser Controls ... 13
Deploying J# Browser Controls... 16
Deploying a Multi-DLL Browser Control.. 16
Running J# Browser Controls on User Computers... 17

Unsupported Features in the Current Release... 19
3 ... 20

Migrate to .NET Using the Java Language Conversion Assistant ... 20
Converting Visual J++ Projects to Visual C#.. 21
Converting Java-Language Projects to Visual C#.. 21
Manually Upgrading Unconverted Code... 22
Converting Applets using the JLCA.. 23

Upgrading the HTML Page ... 23
4 ... 25

Other Rendering Technologies .. 25
DHTML and Client-side Scripting ... 25
ECMAScript and JScript ... 26
Flash ... 26

5 ... 27
Switch to Another JRE ... 27

1
Overview

In a settlement agreement reached in January 2001 to resolve a dispute over Microsoft’s
distribution of its Java implementation, Sun and Microsoft agreed to limit the duration of
Microsoft's use of Sun's source code and compatibility test suites to support the
Microsoft® Java Virtual Machine (MSJVM). Because some developers and enterprises
expressed concern about their ability to eliminate dependencies on the MSJVM in the
time period originally provided, Sun and Microsoft agreed to extend Microsoft's license to
use Sun's Java source code and compatibility test suites. This extension allows Microsoft
to support the MSJVM and address potential security issues until September 30, 2004.

In preparation for the end of Microsoft’s license to use Sun’s Java source code and
compatibility suites, Microsoft has been phasing out the MSJVM in its products since the
settlement was reached. Going forward, the MSJVM will not be included in any future
Microsoft products including Windows Server™ 2003 and Microsoft®
Windows® 2000 SP4, among others. Sites and applications that currently depend upon
the MSJVM will not function correctly when accessed by systems that do not have the
MSJVM installed. For an Internet or intranet site, users with problems would include
those who have new Microsoft systems that do not contain the MSJVM (updated systems
may not be affected as upgrades to Windows operating systems do not remove existing
copies of the MSJVM).

Microsoft recommends that customers of Microsoft Visual J++® and the Microsoft SDK
for Java who have built applications or Web sites that use the MSJVM begin identifying
MSJVM dependencies and transition to an alternate solution. For customers choosing to
pursue a Microsoft supported solution, information is provided on the Microsoft
Visual J#® .NET and the Microsoft Java Language Conversion Assistant. These products
assist developers in migrating existing source code to the .NET Framework.

Intended Audience
This guide is a technical guide intended for developers responsible with defining the
types of migration or transition from the MSJVM that need to be made, determining the
approaches to the work that are appropriate, and implementing those changes.

Knowledge Prerequisites
Knowledge of Java is assumed when reading this guide. Other knowledge requirements
will depend on the transition solutions you choose, but could include ECMAScript,
Dynamic HTML (DHTML), and Microsoft solutions such as the .NET Framework and the
C# language.

 6

How to Use This Solution Guide
This document provides specific guidance for MSJVM migration projects including
migrating to a .NET environment, rewriting in other rendering technologies, and switching
to another JRE.

For specifics on discovering the dependencies on the MSJVM and assessing business
needs accordingly, refer to the Microsoft Java Virtual Machine Transition Guide for IT
Professionals.

The following is a list of content for this guide's chapters:
Chapter 1—Overview. This chapter outlines the guide and describes why Microsoft is

discontinuing support for the MSJVM and a brief summary of transition options.
Chapter 2—Migrate to .NET Using Visual J# and J# Browser Control. This chapter

discusses Visual J# and the J# Browser Control automated tool for converting Java
code to .NET.

Chapter 3—Migrate to .NET Using the Java Language Conversion Assistant. This
chapter discusses the Java Language Conversion Assistant (JLCA) automated tool
for converting Java code to .NET.

Chapter 4—Other Rendering Technologies. This chapter summarizes other
rendering technologies available such as DHTML, ECMAScript, and Flash.

Chapter 5—Switch to Another JRE. This chapter discusses some of the issues
involved in selecting, installing, and deploying an alternate Java runtime
environment (JRE).

 7

Why a Transition Is Needed
The future of the MSJVM is clearly defined by the January 2001 settlement with Sun
Microsystems and the October 2003 license extension between Sun and Microsoft, which
permits Microsoft to continue support of the MSJVM until September 30, 2004.

One option is to do nothing to resolve MSJVM dependencies, however, this option is not
recommended by Microsoft. The MSJVM will become unsupported software on
September 30, 2004, and as a result, there are serious security implications of not
transitioning MSJVM dependencies prior to this date. Although Microsoft will continue to
support customers, the ability to do so will be extremely limited. In light of these
restrictions, new Microsoft products will not include the MSJVM.

Running the MSJVM as unsupported software exposes your system to the possibility of
severe security vulnerabilities. If a security issue is identified following the deadline,
Microsoft will be unable to make security or functionality patches for the MSJVM available
to users. Additionally, critical security issues that occur post-deadline may warrant
Microsoft to release a patch that completely removes the MSJVM with little or no warning,
possibly impacting business-critical applications.

Prior to the deadline, every effort should be made to remove or transition away from the
MSJVM. At a minimum, if you are unable to successfully transition or decide to not
transition away from the MSJVM, locking down security for the MSJVM to trusted sites is
recommended.

Transition Options Available
Microsoft strongly recommends that you determine the extent of your dependencies on
the MSJVM immediately. Keep in mind that any solution chosen to address discovered
dependencies requires extensive testing and an understanding of the range of systems
affected.

Once you identify dependencies on the MSJVM, Microsoft recommends that you take
one or more of the following actions, as appropriate:
● Remove the MSJVM or lock down security and restrict access to applets or

applications as discussed in the Microsoft Java Virtual Machine Transition Guide
for IT Professionals.

● Migrate to another solution:
• Visual J# .NET or J# Browser Controls.
• C# on .NET, using the Java Language Conversion Assistant.
• Other rendering technologies, such as DHTML, ECMAScript, or a 3rd party

display technology such as Flash.
• An alternate JRE.

Note For specific information on how to identify MSJVM dependencies, please refer to
the Microsoft Java Virtual Machine Transition Guide for IT Professionals.

 8

Migrate to .NET
Migrating to .NET allows users to implement a Microsoft supported solution and reuse
existing Java code. Visual J# and the Java Language Conversion Assistant (JLCA) are
two options for migrating J++ or Java applications and applets to .NET. Although both
provide wizards and command line utilities to automatically migrate existing Java applets
and applications into the .NET Framework, some manual conversion of code may be
necessary.

Because of the cross-language interoperability of the .NET Framework, developers can
choose to mix and match J# and the JLCA for a given migration project, depending on
what the goals are for various components of that project.

Visual J# vs. Visual C#
If you decide on migrating to .NET, you must make an assessment on whether converting
your existing code to Visual J# or to Visual C# is right for you. For example, if you have
significant investments in J++ and an extensive knowledge of Java, migrating to Visual J#
may be a viable option. Visual J# allows developers to migrate J++ or Java applications
to .NET while preserving the Java-language syntax and, in most cases, the same JDK
functionality. The J# Browser Control is a new addition to J# aimed at migrating applets.

However, if there is a need for significant architectural restructuring of your applets or
applications, migrating to Visual C# can help accomplish those goals. The JLCA for C#
converts both Java applets and applications to C# and the .NET Framework.

There are a number of other factors that you should take into consideration when
deciding between Visual J# and Visual C#:
● Conversion

Visual J# often converts approximately 95% of all MS Java or Java JDK 1.1.4 or
less code. Less than 5% of code usually needs manual upgrading after converting
to Visual J#. The JLCA converts approximately 90% of code and supports
functionality in J2SE 1.3 and J2EE 1.3 or less. In most projects, less than 10% of
code needs manual upgrading after converting to Visual C#.

● .NET Framework and Language
Although Visual J# supports Java language syntax and uses Java data types,
coercion between data types is not seamless and Value Types, Custom Attributes,
and Enumerations are not supported. Visual C# allows full framework access and
access to all .NET features in accordance with ISO standards.

● Required Run Times
Visual J# requires the .NET Framework and J# Browser Controls runtimes to be
installed on end-user computers. Visual C# only requires the .NET Framework
runtime to be installed.

● Developer Community
Visual J# is supported by a small niche development community. Visual C# is
supported by a large and very active development community.

Note For more information on migrating to .NET, including case studies on migrating
from J++ to Visual J# and instructions on downloading the JLCA, please refer to:
Visual J#: http://msdn.microsoft.com/vjsharp.
Visual C#: http://msdn.microsoft.com/vcsharp.

 9

Microsoft Product Support Services
Microsoft Product Support Services (PSS) is available to help assist migrating existing
applications and functionality to any Microsoft technology, including the .NET
environment. Microsoft PSS can assist developers in migrating current Java code to
Visual J# or Visual C#, enabling migration of existing applications with current feature
sets. Technical assistance on adding additional functionality is not included and will
continue to be fee-based. No other special offers will be made available after September
30, 2004. MSJVM migration support is now available worldwide. Please contact PSS at
800-936-5800 in the US or your local subsidiary.

Note Microsoft will continue support of existing products that have MSJVM
dependencies according to existing support policies, but cannot support MSJVM
related issues. For more information on International Support, refer to:
http://support.microsoft.com/common/international.aspx.

 10

2
Migrate to .NET Using
Visual J# and
J# Browser Controls

Microsoft Visual J# can be used by developers who are familiar with the Java-language
syntax to build applications and services on the .NET Framework. It integrates the Java-
language syntax into the Visual Studio® .NET integrated development environment
(IDE). Visual J# also supports most of the functionality found in Visual J++ 6.0, including
Microsoft extensions such as WFC.

Note Applications and services built with Visual J# will only run on the .NET
Framework. Visual J# is independently developed by Microsoft and is not endorsed or
approved by Sun Microsystems, Inc. For more information refer to:
http://msdn.microsoft.com/vjsharp/

Migrating J++ Applications with the Visual J#
Upgrade Wizard

Visual J# includes an upgrade wizard that converts Visual J++ 6.0 projects into Visual J#
projects. The intuitive upgrade wizard is invoked by opening a Visual J++ project file in
Visual J#. It is important to note that no Java source code changes are made to the
project; only the project and solution files are upgraded to match the Visual Studio .NET
format.

Once the upgrade is complete, a summary report is displayed. This report lists any items
that are not fully supported in Visual J#. Approximately 95% of a Visual J++ project will
upgrade to Visual J# without any required changes. However, for functionality not
supported directly in J#, there is equivalent .NET Framework functionality that the
developer can utilize.

Note Applet functionality was not originally supported in the release of Visual J#,
therefore the upgrade report lists this as an unsupported feature. J# Browser Controls
are now available to help developers migrate applet functionality.

 11

Migrating Java Applets with J# Browser Controls
Microsoft J# Browser Controls allow developers to migrate Java applets to the .NET
Framework. Java applets migrated to J# Browser Controls retain the same runtime
characteristics without loss of functionality and run on end-user computers in Internet
Explorer within the context of the .NET Framework. End users who wish to run J#
Browser Controls hosted by a Web site must have the .NET Framework and the J#
Browser Controls runtime installed on their computers. Similarly, developers who wish to
upgrade Java applets to J# Browser Controls must have the J# Browser Controls runtime
and the .NET Framework SDK or Visual Studio .NET 2003 installed on their development
computers.

Note J# Browser Controls are not intended to run on a Java Virtual Machine. J#
Browser Controls can only be run in Internet Explorer. For more information on J#
Browser Controls, please refer to: http://msdn.microsoft.com/vjsharp/browsercontrols.

Migrating Java applets to J# Browser Controls is a three step process:
1. Compile the Java applet to J# Browser Controls using the Visual J# compiler.
2. Upgrade the HTML page that contains the <APPLET> tag of the applet.
3. Deploy the J# Browser Controls and HTML page to the Web server.

Compiling Java Applets to J# Browser Controls
A Java applet can be upgraded to J# Browser Controls by compiling it to a managed
library using the “Visual J# Compiler” (vjc.exe): http://msdn.microsoft.com/library/en-
us/dv_vjsharp/html/vjgrfVisualJCompilerOptions.asp.

Compiling Java applets to a managed library is similar to compiling any other library in
Visual J#. If only the bytecode (.class files) exists for the Java applet, the “J# Binary
Converter Tool” (JbImp.exe) can be used to convert the Java applet to a managed
library: http://msdn.microsoft.com/library/en-us/dv_vjsharp/html/
vjgrfJavaBinaryConverter.asp.

Compiling Java applets to J# Browser Controls does not require any changes to the Java
applet source code because the J# Browser Controls runtime provides support for
functionality equivalent to most of the JDK 1.1.4 level packages, including the
java.applet package.

Managed libraries containing J# Browser Control are no different from other managed
libraries in the .NET Framework. When a user visits a Web site hosting J# Browser
Controls, the J# Browser Controls runtime will download the managed library and run the
appropriate class that extends java.applet.Applet in Internet Explorer.

A Java applet can be compiled to a J# Browser Control either from the command prompt
or from Visual Studio .NET.

 12

Compiling a Java Applet from the Command Prompt
To compile a Java applet from the command line using the J# compiler (vjc.exe):

C:\AppletSources>vjc.exe /target:library /out:MyApplet.dll *.java

To compile a Java applet using the J# Binary Converter Tool:
C:\AppletSources>jbimp.exe /target:library /out:MyApplet.dll *.class

If you have Visual Studio .NET installed, the J# compiler (vjc.exe) and the J# Binary
Converter Tool (JbImp.exe) are accessible from the Visual Studio .NET command
window. If Visual Studio .NET is not installed, you must ensure that these tools are in the
path of the command prompt.

When migrating Java applets that use resources, follow the steps described in
“Upgrading Visual J++ 6.0 Applications That Use Resources”:
http://msdn.microsoft.com/library/
en-us/dv_vjsharp/html/vjgrfUpgradingVisualJ60ApplicationsThatUseResources.asp
and “How To: Resources in Visual J# .NET”:
http://www.gotdotnet.com/team/vjsharp/ResourcesHowTo.htm

Compiling a Java Applet using Visual Studio .NET
If the Java applet is a Visual J++ 6.0 Applet on HTML project, it can also be compiled to
J# Browser Control using Visual Studio .NET:

1. Open the Visual J++ 6.0 project in Visual Studio .NET. This starts the Visual J# .NET
project upgrade wizard.

2. Click Next through all steps of the upgrade wizard. The upgrade wizard converts the
Visual J++ project to a Visual J# .NET Class Library project.

3. Open the upgrade report to view any issues detected during the upgrade.

Note The report will say Applet projects are not supported. Ignore this error and fix
all other issues listed in the upgrade report before building the project. This error
occurs because J# Browser Controls was shipped after Visual Studio .NET 2003 was
released.

4. Build the project. This compiles the Java applet to a managed library.

You cannot start J# Browser Controls in Internet Explorer from Visual Studio by clicking
Debug and then Start or pressing F5. You must copy the control to a virtual directory on
a Web server to run it.

Note You cannot start J# Browser Controls v 1.1 in Internet Explorer from Visual
Studio by clicking Debug and then Start or pressing F5. You must copy the control to a
virtual directory on a Web server to run it. J# Browser Controls v1.1b, currently in beta,
removes the requirement to use a Web server to host J# Browser Controls.
For more information, refer to “Deploying J# Browser Controls”:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dv_vstechart/html/vjtskMigratingJavaAppletsToMicrosoftJBrowserControls.asp
and “How to: Debug J# Browser Controls”: http://msdn.microsoft.com/library/en-
us/dv_vstechart/html/vjtskhowtodebugjbrowsercontrols.asp.
For more information on upgrading Visual J++ 6.0 projects to Visual J# .NET, refer to
“Upgrading from Visual J++ 6.0”: http://msdn.microsoft.com/library/
en-us/dv_vjsharp/html/vjsamUpgradingFromVisualJ60.asp.

 13

Updating the HTML Page to use J# Browser Controls
After a Java applet is compiled to a managed library, the next step is to upgrade the
HTML page hosting the Java applet. The <APPLET> tag or the Java applet <OBJECT>
tag in the HTML page must be converted to the <OBJECT> tag supported by J# Browser
Controls.

The J# Browser Controls runtime includes a tool called the HTML Applet to Object Tag
Converter (TagConvert.exe) that automatically upgrades HTML pages to use J# Browser
Controls. TagConvert.exe is located in the J# Browser Controls installation directory. The
tool is used with the following syntax:

TagConvert [options] <source files>

For example:
TagConvert.exe MyAppletPage.html

The input to the tool can be any text file including files with the .html, .htm, .asp, and
.aspx extensions.

The tool converts the <APPLET> tag or the Java applet<OBJECT> tag to the following J#
Browser Control <OBJECT> tag:

<OBJECT

 CLASSID="clsid:a399591c-0fd0-41f8-9d25-bd76f632415f"

 WIDTH= pixels

 HEIGHT= pixels

 ID=browserControlName

 ALIGN= alignment

 HSPACE= pixels

 VSPACE= pixels

 VJSCODEBASE = codebaseURL

>

 <PARAM NAME = attribute1 VALUE = value>

 <PARAM NAME = attribute2 VALUE = value>

 . . .

 alternateHTML

</OBJECT>

In the above example, CLASSID is the CLASSID of the ActiveX control that downloads
and executes J# Browser Controls. This exact CLASSID must be used in the J# Browser
Controls <OBJECT> tag.

VJSCODEBASE is the URL of the J# Browser Control class and the managed library
containing this class. The '#' token separates the managed library file name and the J#
Browser Controls class name. The file name must also include the file extension. For
example:

VJSCODEBASE =

http://www.MyWebSite.com/MyApplet/MyAppletClass.dll#MyAppletClass

 14

Conversion Process
When converting HTML pages, the tool deletes the original <APPLET> tag or Java applet
<OBJECT> tag and replaces them with the J# Browser Controls <OBJECT> tag. The tool
also generates a JavaScript file named jbctagconvert.js in every directory that it is run in.
When the updated HTML page is loaded in a browser, the updated HTML, in conjunction
with the JavaScript files, renders the J# Browser Control in the browser window. The tool
generates the JavaScript file to enhance the browsing experience of J# Browser Controls
in the upcoming Internet Explorer update.

Note The <APPLET> tag or the Java applet <OBJECT> tag is replaced with the J#
Browser Control <OBJECT> tag enclosed within comments and preceded by the
 tag. This comment block and the associated tag must not be deleted
as they are required to display the J# Browser Control. The JavaScript file,
jbctagconvert.js, generated by the tool also must not be deleted and must be present in
any directory that has an HTML page hosting a J# Browser Control.

The tool creates a backup of the original files before converting the tags. Backup copies
of files have the .vjsbak extension and are located in the directory of the original file. For
example, index.htm will be backed up as index.htm.vjsbak.

The tool uses the values in the CODE and CODEBASE attributes of the original
<APPLET> tag (or Java applet <OBJECT> tag) to create the value of the
VJSCODEBASE attribute. For example:

CODE = "MyAppletClass"

CODEBASE = http://www.MyWebSite.com/MyApplet

is modified to:
VJSCODEBASE =

http://www.MyWebSite.com/MyApplet/MyAppletClass.dll#MyAppletClass

By default, the tool assumes that the name of the J# Browser Control class (for example,
MyAppletClass) to be the same as the name of the DLL (MyAppletClass.dll). If the names
of the J# Browser Control class and the DLL are different, you will have to modify the
VJSCODEBASE attribute value accordingly.

When using this tool, it is recommended that you compile the Java applet to a managed
library with the same name as the applet class. For example:

C:\MyAppletClassSources>vjc /target:library /out:MyAppletClass.dll *.java

The J# Browser Controls runtime only supports the HTTP and HTTPS protocols in the
VJSCODEBASE attribute. All absolute paths in VJSCODEBASE must begin either with
http:// or https://. When a relative path is specified, the J# Browser Control is loaded using
the HTTP protocol. J# Browser Controls do not support loading controls from a location
that is different from the DOCBASE, the location from where the HTML page is loaded.
The value in VJSCODEBASE must be the same as the DOCBASE or must one of the
subdirectories of DOCBASE.

Many attributes of the OBJECT are left intact during the conversion. The details of
attributes converted by TagConvert are specified in the following section. Many
parameters in the J# Browser Controls <OBJECT> tag are the same as the
corresponding parameters of the <APPLET> or Java applet <OBJECT> tag.

 15

Command-Line Options for TagConvert.exe
The supported command-line options for TagConvert.exe are:

/recurse:<wildcard>
Causes the tool to search the current directory and all subdirectories for files to
convert according to the wildcard specifications. For example, to upgrade all
files with the .htm and .html extensions in the current directory and its
subdirectories:

TagConvert /recurse *.htm *.html

/verbose

Causes the tool to print the names of files changed during the conversion. The
file name includes the fully qualified path to the file. The tool also prints the
total number of files parsed and total number of files converted. For example,
to upgrade all files with the .htm extension in the specified directory, and dump
the names of files modified to the changedfiles.txt file:

TagConvert /verbose \AppletSources\Pages*.htm >
changedfiles.txt

Attribute Mapping Between <APPLET> Tag and J# Browser Controls
<OBJECT> Tag
The following table shows the mapping between the attributes in the <APPLET> tag and
the attributes in the J# Browser Control <OBJECT> tag.

<APPLET> tag syntax (includes Internet Explorer
extensions)

J# Browser Controls
<OBJECT> tag syntax

CODEBASE VJSCODEBASE
CODE VJSCODEBASE
WIDTH WIDTH
HEIGHT HEIGHT
NAME ID
ID ID
ALIGN ALIGN
VSPACE VSPACE
HSPACE HSPACE
ARCHIVE Unsupported in current

release
ALT ALT
<PARAM> <PARAM>
alternateHTML alternateHTML
<PARAM NAME = FireScriptEvents VALUE = True> Left intact but unsupported

in current release
<PARAM NAME = cabbase VALUE = cabFileName>
<PARAM NAME = cabinets VALUE = cabFileNames>

Left intact but unsupported
in current release

<PARAM NAME = useslibrary VALUE = DUFriendlyName>
<PARAM NAME = useslibrarycodebase VALUE = DUFileName>
<PARAM NAME = useslibraryversion VALUE= DUVersionNumber>

Left intact but unsupported
in current release

<PARAM NAME = namespace VALUE = applicationNamespace> Left intact but unsupported
in current release

In the current release, the following attributes in the <APPLET> tag are unsupported and
have no equivalent attributes in the J# Browser Controls <OBJECT> tag:
● The archive, cabbase and cabinets attributes. Packaging J# Browser Controls

into .cab, .zip, or .jar files is not supported in the current release. J# Browser
Controls must be deployed to the Web server as stand-alone .dll files.

 16

● The FireScriptEvents attribute. In the current release, there is no support to sink
events fired by J# Browser Controls in scripts on the HTML page. J# Browser
Controls v1.1b, currently in beta, introduces scripting functionality.

● The useslibrary, useslibrarycodebase, useslibraryversion and namespace
attributes. The J# Browser Controls runtime does not support the Java Package
Manager semantics of the MSJVM.

The attributes in the <APPLET> tag that have direct equivalents in the <OBJECT> tag
can be copied as is. They have the same meaning in the J# Browser Controls
<OBJECT> tag as in the original <APPLET> tag.

Deploying J# Browser Controls
To deploy J# Browser Controls, copy the managed library and updated HTML pages to
the appropriate directory on the Web sever. You must copy the managed library either to
the same directory as the HTML page or to a sub-directory.

When using the IIS Web server, the permissions on the virtual directory that the J#
Browser Control is copied to must be set correctly; the Execute Permissions field on the
virtual directory must be set to Scripts only, the default permission level of a virtual
directory in IIS. Any resource files used in the J# Browser Control, such as image, audio,
or data files, also need to be copied to the same location as the managed library.

Note J# Browser Controls v1.1b, currently in beta, removes the requirement to host J#
Browser Controls on a Web server.

Deploying a Multi-DLL Browser Control
A J# Browser Control can be split into multiple DLL files. In such cases, the DLL
containing the main J# Browser Control class must be referenced in the HTML page. The
J# Browser Controls runtime will download additional DLLs as required at run time.

When deploying a multi-DLL control to a Web server, all files related to the same J#
Browser Control must be copied to the same directory as standalone files and cannot be
packaged as .cab, .zip, or .jar files.

Packaging Multiple J# Browser Controls into the Same Library
Multiple J# Browser Controls can also be packaged into the same managed library. In
such cases, the <OBJECT> tag for each browser control must point to the same
managed library but with different class names.

For example, if MyApplets.dll in the directory AppletDir contains J# Browser Controls with
names MyApplet1 and MyApplet2, you can refer to the two browser controls as shown
in the following example:

VJSCODEBASE = http://www.microsoft.com/AppletDir/MyApplets.dll#MyApplet1

VJSCODEBASE = http://www.microsoft.com/AppletDir/MyApplets.dll#MyApplet2

Because J# Browser Controls can only be downloaded from the same location as the
HTML page or one of its subdirectories, you may need to copy the managed library to
multiple locations if the directories of the HTML pages differ.

 17

Running J# Browser Controls on User Computers
For users to run J# Browser Controls in Internet Explorer, the J# Browser Controls
runtime must be installed. By default, the J# Browser Control runtime prompts end users
before running controls hosted on Web pages. When a user browses to a web site that
contains a J# Browser Control, the following dialog box is displayed:

J# Browser Controls are downloaded and run if the user clicks Yes. Clicking No prevents
the browser control from being run.

Selecting the Add this site to the list of sites allowed to run J# Browser Controls
and don't ask me again check box and clicking Yes adds the Web site to the list of sites
allowed to run J# Browser Controls, and the user is no longer prompted for pages on the
Web site.

The user can also use the J# Browser Controls Security Options dialog box available
under Administrative Tools in Control Panel to manage the list of sites allowed to run J#
Browser Controls. In Windows XP, you can access this dialog box from Performance
and Maintenance in Control Panel. Double-click the J# Browser Control Security icon
to open the following dialog box:

 18

The options are:

● Disable J# Browser Controls
Prevents J# Browser Controls from any Web site to run on the computer.

● Only from Web sites in this list
Only J# Browser Controls from Web sites the user adds to the list are allowed
to run. This is the default setting.

● Only on the Intranet and from Web sites in this list
Only J# Browser Controls on the Intranet or from Web sites the user adds to
the list are allowed to run on the computer.

● On any Web site
J# Browser Controls from any site are allowed to run on the computer.

Entering the address of a Web site in the Add Web site text box and clicking Add adds
the Web site to the list of sites allowed to run J# Browser Controls. Similarly, selecting a
Web site from the Web sites allowed to run J# Browser Controls list and clicking
Remove removes the site from the list. When a Web site is added to the list of sites
allowed to run J# Browser Controls, the user is not prompted before running J# Browser
Controls on the Web site.

By default, the Prompt to add new Web sites to this list in the future check box is
selected, causing the J# Browser Controls runtime to prompt the user before running J#
Browser Controls from Web sites not in the list. When this check box is cleared, J#
Browser Controls from Web sites not in the list are not run and the user is not prompted.

 19

Unsupported Features in the Current Release
The following features are unsupported in the current release of J# Browser Controls:
● Accessing J# Browser Controls from scripts in HTML pages

Accessing the public methods and public variables of a J# Browser Control from
scripts in HTML pages is not supported. Also, sinking events fired by J# Browser
Controls in scripts using the <param name=FireScriptEvents value=True>
attribute is not supported. J# Browser Controls v1.1b, currently in beta, will
introduce scripting functionality.

● Trust-based security
There is no support for trust-based security semantics as supported by the
MSJVM.

● Java Package Manager
The Java Package Manager functionality as supported in the MSJVM is
unsupported in J# Browser Controls. J# Browser Controls do not support an object
cache that can be used to install classes locally and then run them with a restricted
set of permissions using permission signing. Therefore, there is also no support to
install and run Distribution Units.

● Archive files
Archive files are unsupported. A J# Browser Control can be split into multiple
managed libraries. However, when deploying a multi-library control to a Web
server, the files must be copied as stand-alone files and must not be packaged into
.cab, .zip, or .jar files.

● No designer support
There is no designer support in Visual Studio .NET for J# Browser Controls.

 20

3
Migrate to .NET Using the
Java Language Conversion
Assistant

The Java Language Conversion Assistant (JLCA) is a tool that converts Visual J++ 6.0
projects and Java-language files to Visual C#. By converting these files to Visual C#, you
can leverage existing code base and take advantage of the benefits of the .NET
Framework. The JLCA does not modify your existing project, but creates a new Visual C#
project based upon the original project. The JLCA is not limited to Java code that targets
the MSJVM and can also convert server-side Java programs such as Java Server Pages
(JSPs) and Servlets, along with J2SE and J2EE libraries. The converted Visual C#
project contains all the new Visual C# code generated automatically from the existing
Visual J++ or Java-language code.

To convert some of the functionality in the original project that is unavailable in Microsoft
Visual C#®, JLCA creates support classes that duplicate the original functionality.
Although every effort is made to preserve the original architecture of your application in
the converted project, support classes are sometimes substantially different
architecturally from the classes they emulate.

Some code in your project may not be converted automatically. Any errors, warnings, or
issues generated in the course of conversion are displayed in a conversion report after
the new project is generated. Unconverted code is noted in the code of the new project
by comments labeled UPGRADE_TODO. You can view conversion comments on the
task list. Each conversion comment contains a link to a Help topic on how to convert that
code manually.

Note If you are new to Visual C#, take some time to familiarize yourself with the
language before attempting this process. For more information, refer to “C# Language
Tour”: http://msdn.microsoft.com/library/en-us/cscon/html/vclrfGettingStarted_PG.asp.
and “Converting Visual J++ or Java-language Project to Visual C#”:
http://msdn.microsoft.com/library/en-
us/dv_jlca/html/vbtskusingjavalanguageconversionassistant.asp

 21

Converting Visual J++ Projects to Visual C#
To convert a Visual J++ project using the JLCA:

1. Start Visual Studio .NET.
2. On the File menu, point to Open, and click Convert.
3. Select Java Language Conversion Assistant, and click OK.
4. On the Source Files page, select Visual J++ 6.0 project .
5. On the Select a project file page, click Browse.
6. Browse to the correct .vjp file, and select it.

Note If the CLASSPATH directive of your .vjp file specifies .jar or .class files, they are
ignored.

7. On the Specify a directory for your new project page, specify the name and
directory of the new project to be created.

8. On the Begin conversion page, click Next.
9. Fix code that was not converted automatically.

Converting Java-Language Projects to Visual C#
To convert a Java-language project using the JLCA:

1. Start Visual Studio .NET
2. On the File menu, point to Open, and click Convert.
3. Select Java Language Conversion Assistant, and click OK.
4. On the Source Files page, click A directory containing the project's files.
5. On the Select source directory page, click Browse.
6. Browse to the correct project, and select it.

Note You will not see the files in the directory you selected, but all .jav and .java files
in it are converted. All other files in the directory are ignored.

7. On the Configure your new project page, specify the following:
• Name of the project to be created.
• Directory in which any additional files for your project are located.
• Output type of the project.

8. On the Specify a directory for your new project page, specify the name and
directory of the new project to be created.

9. On the Begin your conversion page, click Next.
10. Fix code that was not converted automatically.

 22

Manually Upgrading Unconverted Code
After the JLCA converts your Visual J++ project or Java-language files, the new Visual
C# project might contain code that was not converted automatically. Comments are
inserted in the code of the new project to help you convert that code to Visual C#
manually.

Comment Type Description
UPGRADE_TODO Code that could not be converted automatically
UPGRADE_WARNING Code that may be problematic
UPGRADE_NOTE Code that may exhibit a different behavior from the original code

There may also be some compiler errors that must be corrected before the application
compiles. Each comment contains a brief description of the issue and a link to a Help
topic about how to convert the code. To manually upgrade unconverted code:

1. After running the Java Language Conversion Assistant wizard, open your project in
Visual Studio .NET.

2. On the View menu, select Show Tasks, and then either Comment or All. The
conversion notes are displayed on the Task List.

3. On the Task List, double-click the first conversion note. The focus moves to the
location of that comment in the code.

4. Examine the note and the code it references. For more information on correcting that
error manually, click the link in the conversion note to display a Help topic for that error.

Some of the conversion notes in the converted code for JSP pages are not linked. In this
case you can cut and paste the note into the Help Search box.

5. Upgrade the code manually.
6. Repeat Steps 3 to 5 until all conversion notes are addressed.

Note For more information on manually upgrading, refer to “Manually Upgrading
Unconverted Code”. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_jlca/html/vbtskmanuallyupgradingnonconvertedcode.asp

For a list of errors, warnings, and issues, refer to “Java Language Errors, Warnings,
and Issues”: http://msdn.microsoft.com/library/en-
us/dv_jlca/html/vberrjavalanguageerrorswarningsissues.asp.

For a list of Help topics for JSP classes and methods that cannot be converted
automatically, refer to “Javax.servlet.jsp Error Messages”:
http://msdn.microsoft.com/library/en-
us/dv_jlca/html/vberrjavaxservletjsperrormessages.asp

 23

Converting Applets using the JLCA
Converting applets using the JLCA is a two-step process. The first step is to convert the
actual applet code to C# using the JLCA. The second step is to convert the HTML page
which references the applet to the .NET equivalent. To convert the applet code to C#,
use the exact same process as when converting an application. The applet code is
converted as a class library project.

After fixing any conversion issues you may have in the converted applet, you will have a
Windows Form Control (WFC). You can host converted user controls in Internet Explorer
just as you would an applet. Hosted controls are declared in HTML pages with the
<OBJECT> tag instead of the <APPLET> tag. Use the classid attribute to identify the
control by specifying the path to the control and the fully qualified name of the control,
separated by the pound sign (#):

<OBJECT id="myControl"

classid="http:ControlLibrary1.dll#ControlLibrary1.myControl"

VIEWASTEXT></OBJECT>

For the control to be displayed properly, the .dll file containing the control must either be
in the same virtual directory as the Web page displaying it or installed in the global
assembly cache.

Upgrading the HTML Page
The WFC does not support the deprecated <APPLET> tag or the <OBJECT> tag syntax
used by the MSJVM and other Virtual Machines to run Java applets in Internet Explorer.
In order to run your converted applet in the browser, first change your Web page to utilize
the WFC <OBJECT> tag syntax. This is done either automatically or manually.

The simplest way to upgrade your Web page references is to allow the JLCA to
automatically update the references. If you have a Visual J++ applet on HTML project
and choose to convert using the Visual J++ file, the JLCA automatically parses the
associated HTML file and changes all <APPLET> tag references as necessary. You can
then copy and paste this tag text into other pages that reference the same applet.

If you don’t have a Visual J++ project for your applet or don’t want to use it for
conversion, you can also convert the HTML references by hand. Here is an example of
the <APPLET> tag syntax, as used in HTML pages including MSJVM extensions:

<APPLET

CODE = appletFile

CODEBASE = codebaseURL

WIDTH = pixels

HEIGHT = pixels

VSPACE = pixels

HSPACE = pixels

ALIGN = alignment

ID = appletInstanceName

ARCHIVE = archiveList

ALT = alternateText

>

<PARAM NAME = FireScriptEvents VALUE = True>

<PARAM NAME = cabbase VALUE = cabFileName>

<PARAM NAME = cabinets VALUE = cabFileNames>

 24

<PARAM NAME = useslibrary VALUE = DUFriendlyName>

<PARAM NAME = useslibrarycodebase VALUE = DUFileName>

<PARAM NAME = useslibraryversion VALUE= DUVersionNumber>

<PARAM NAME = namespace VALUE = applicationNamespace>

<PARAM NAME = appletAttribute1 VALUE = value>

<PARAM NAME = appletAttribute2 VALUE = value>

. . .

alternateHTML

</APPLET>

The syntax as supported by Windows Forms Controls is:
<OBJECT

CLASSID="http:<OutputFileName>#<ClassName>"

WIDTH= pixels

HEIGHT= pixels

ID=browserControlInstanceName

ALIGN= alignment

HSPACE= pixels

VSPACE= pixels

>

<PARAM NAME = attribute1 VALUE = value>

<PARAM NAME = attribute2 VALUE = value>

. . .

alternateHTML

</OBJECT>

In the above WFC syntax example CLASSID is the CLASSID string comprised of the
output file name and the name of the Windows Form Control class itself. Both of these
settings can be found in the Project Properties dialog. To open the Project Properties
dialog, right-click your converted applet project in the Solution Explorer and select
“Properties”.

 25

4
Other Rendering Technologies

Alternate rendering technologies including DHTML, ECMAScript, VBScript, JScript, and
Flash, among others, are also viable options. These technologies can implement most
simple navigational items (for example, menus, rollovers, simple calculators, and chat
clients), and are an option for converting low to medium complexity applets dedicated to
navigation and user interface tasks.

Note Although Microsoft cannot vouch for the security and reliability of solutions
offered by other companies, non-Microsoft solutions are available. Customers choosing
to explore such solutions should engage in sufficient testing prior to pursuing this
migration path.

DHTML and Client-side Scripting
In this guide, the acronym DHTML (Dynamic HTML) is used broadly to include
combinations of CSS, scripting, and HTML in the Document Object Model (DOM). The
advantage of DHTML is that used carefully it is a flexible low-overhead, multi-browser,
multi-platform solution. Because there is no plug-in or download required, interpretation
and rendering of the navigational aid occur within the browser, rather than in a virtual
machine or plug-in. Many Web sites already provide public domain or low-cost code for
implementing simple interface features such as drop-down menus, text scrollers, clocks,
rollover buttons, and complicated utilities such as calculators, chat clients, and editors.

The disadvantage of DHTML is that it must be used with care to ensure cross-browser
compatibility and must be tested on the appropriate platforms and browsers. Because
DHTML relies heavily on the features of the scripting language and the implementation of
style sheets, there are issues with how well DHTML works on each browser and each
platform. Version 6.0 browsers handle style sheets reasonably well, and there is a core
set of functions in the scripting language (ECMAScript and extensions) that are reliable
across most browsers.

The following are links to sites where you can view samples of various effects
implemented in DHTML. If those effects are similar to your goals, the samples will
provide a starting point for your implementations.

A discussion of DHTML in Internet Explorer:
http://msdn.microsoft.com/ie

Variety of examples, including a clock and a chat client:
http://msdn.microsoft.com/downloads/samples/internet/default.asp

 26

Non-Microsoft sites:
http://www.codetoad.com/dhtml/
http://simplythebest.net
http://www.dynamicdrive.com/dynamicindex1.

Note Microsoft cannot guarantee or warrant that any of these samples will work
correctly in your environment. Test all samples sufficiently if you are implementing
something similar to ensure your needs are met.

ECMAScript and JScript
JavaScript was originally Netscape’s version of ECMAScript (European Computer
Manufacturers Association), a standard language specification, whereas JScript is
Microsoft’s version of ECMAScript. JScript .NET is the next generation of Microsoft’s
implementation of ECMA 262 language and combines the existing feature set of JScript
with the best features of class-based languages.

In many cases the functionality of Java applets can be provided by using the ECMAScript
language. An Internet search for JavaScript will yield a variety of resources, many with
ready-to-use scripts that could potentially replace Java applet code.

Note There is no direct conversion method available for new scripting languages. It is
necessary to rewrite the Java code into the appropriate language. For more information
on Windows scripting technologies, including JScript and VBScript, refer to:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vtoriMicrosoftWindowsScriptTechnologies.asp.

Flash
Flash is another rendering technology that can provide the functionality of certain Java
applets that currently are dependent on the MSJVM. In some cases Flash may also
extend the function of these applets. Flash is a client-based plug-in that allows the
rendering of interactive graphics and animation.

As with any other rendering technology, migrating to Flash is not an automated process
and will include extensive rewriting of existing code and may require extensive
knowledge of the associated scripting language (ActionScript). Flash is not a Microsoft
supported technology and will therefore require you to seek support options from the
appropriate vendor if you choose this technology as your migration solution.

Note For more information on Flash, its features, and implementation considerations,
please refer to: http://www.macromedia.com/software/flash/.

 27

5
Switch to Another JRE

Note Microsoft does not guarantee or warrant that alternate JREs will work correctly in
your environment. Test all JREs sufficiently during implementation to ensure that all of
your needs are met.

Several vendors have announced that they will ship an alternate Java runtime
environment (JRE) on their computers when Microsoft is no longer able to support the
MSJVM. Whether you adopt this solution depends upon your business needs, including
portability, reliability, versions, and maintenance.

Although vendors represent that their JREs comply with relevant Java specifications, all
JREs are not necessarily equivalent for your needs. Not all implementations of Java
specifications are identical, and these differences may cause difficulties for you.

Current Visual J++ code may need to be ported to work with an alternate JRE. The use of
Microsoft extensions is easy to find in current J++ source files; you can find Java source
files that make use of the @dll directive by using a CMD.EXE command of the form:

 find /I "@com" c:\src*.*

Similar commands will find other extensions, such as the @com and @security
directives. Once you have identified the use of the extensions, you can gauge the effects
of removing them.

The use or removal of the Microsoft extensions makes no syntactic difference to the Java
code because the directives are embedded in comments. It is possible to turn the
extensions off with options to the javac command, so you can easily compare the effect
of running the application with and without the extensions.

Alternate JREs are deployed throughout your organization using the same means by
which you normally install new applications on user machines. For more information on
properly installing an alternate JRE please refer to vendor documentation. If you choose
to install an alternate JRE, any problems you experience with Java support will not be
addressed by Microsoft, and are subject to relevant support and license agreements with
the appropriate vendor of the alternate JRE.

The following is a partial list of available alternate JREs and is not intended to represent
all available alternate JREs:

Sun JRE for Windows:
http://www.java.com/en/download/windows_automatic.jsp

 28

IBM JRE (as part of the IBM WebSphere SDK for Web Services):
http://www-106.ibm.com/developerworks/webservices/wsdk/

BEA WebLogic JRockit:
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/jrockit

