## SunPower Series HLMP-ELxx, HLMP-EHxx, HLMP-EJxx, HLMP-EGxx T-1<sup>3</sup>/<sub>4</sub> (5 mm) Precision Optical Performance AllnGaP LED Lamps

# **Data Sheet**

### Description

These Precision Optical Performance AlInGaP LEDs provide superior light output for excellent readability in sunlight and are extremely reliable. AlInGaP LED technology provides extremely stable light output over long periods of time. Precision Optical Performance lamps utilize the aluminum indium gallium phosphide (AlInGaP) technology.

These LED lamps are untinted, nondiffused,  $T-1^3/_4$  packages incorporating second generation optics producing well defined spatial radiation patterns at specific viewing cone angles.

These lamps are made with an advanced optical grade epoxy, offering superior high temperature and high moisture resistance performance in outdoor signal and sign applications. The high maximum LED junction temperature limit of  $+130^{\circ}$ C enables high temperature operation in bright sunlight conditions. The package epoxy contains both uv-a and uv-b inhibitors to reduce the effects of long term exposure to direct sunlight.

These lamps are available in two package options to give the designer flexibility with device mounting.

### Features

- · Well defined spatial radiation patterns
- Viewing angles: 8°, 15°, 23°, 30°
- · High luminous output
- Colors:
  - 590 nm amber 605 nm orange 615 nm reddish-orange 626 nm red
- High operating temperature: T<sub>J</sub> LED = +130°C
- Superior resistance to moisture
- Package options: With or without lead stand-offs

### Benefits

- Viewing angles match traffic management sign requirements
- Colors meet automotive and pedestrian signal specifications
- Superior performance in outdoor environments
- · Suitable for autoinsertion onto PC boards

### **Applications**

- Traffic management: Traffic signals Pedestrian signals Work zone warning lights Variable message signs
- Commercial outdoor advertising: Signs Marquees
- Automotive:
  - Exterior and interior lights



| Typical<br>Viewing Angle | Color and Dominant<br>Wavelength | Lamps without<br>Standoffs on Leads | Lamps with Standoffs<br>on Leads | Luminous Intensity<br>Iv (mcd) <sup>[1,2,5]</sup> @ 20 mA |       |
|--------------------------|----------------------------------|-------------------------------------|----------------------------------|-----------------------------------------------------------|-------|
| 2⊕1⁄2 (Deg.)[4]          | (nm), Typ. <sup>[3]</sup>        | (Outline Drawing A)                 | (Outline Drawing B)              | Min.                                                      | Max.  |
| 8°                       | Amber 590                        | HLMP-EL08-T0000                     | HLMP-EL10-T0000                  | 2500                                                      | -     |
|                          |                                  | HLMP-EL08-VY000                     | HLMP-EL10-VY000                  | 4200                                                      | 12000 |
|                          |                                  | HLMP-EL08-VYK00                     |                                  | 4200                                                      | 12000 |
|                          |                                  | HLMP-EL08-WZ000                     | HLMP-EL10-WZ000                  | 5500                                                      | 16000 |
|                          |                                  | HLMP-EL08-X1K00                     | HLMP-EL10-X1K00                  | 7200                                                      | 21000 |
|                          |                                  | HLMP-EL08-X1000                     | HLMP-EL10-X1000                  | 7200                                                      | 21000 |
|                          | Orange 605                       | HLMP-EJ08-WZ000                     |                                  | 5500                                                      | 16000 |
|                          |                                  | HLMP-EJ08-X1000                     | HLMP-EJ10-X1000                  | 7200                                                      | 21000 |
|                          |                                  | HLMP-EJ08-Y2000                     |                                  | 9300                                                      | 27000 |
|                          | Red-Orange 615                   | HLMP-EH08-UX000                     | HLMP-EH10-UX000                  | 3200                                                      | 9300  |
|                          |                                  | HLMP-EH08-WZ000                     | HLMP-EH10-WZ000                  | 5500                                                      | 16000 |
|                          |                                  | HLMP-EH08-X1000                     | HLMP-EH10-X1000                  | 7200                                                      | 21000 |
|                          |                                  | HLMP-EH08-Y2000                     | HLMP-EH10-Y2000                  | 9300                                                      | 27000 |
|                          | Red 626                          | HLMP-EG08-T0000                     | HLMP-EG10-T0000                  | 2500                                                      | -     |
|                          |                                  | HLMP-EG08-VY000                     |                                  | 4200                                                      | 12000 |
|                          |                                  | HLMP-EG08-WZ000                     | HLMP-EG10-WZ000                  | 5500                                                      | 16000 |
|                          |                                  | HLMP-EG08-X1000                     | HLMP-EG10-X1000                  | 7200                                                      | 21000 |
|                          |                                  | HLMP-EG08-YZ000                     |                                  | 9300                                                      | 16000 |
|                          |                                  | HLMP-EG08-Y2000                     | HLMP-EG10-Y2000                  | 9300                                                      | 27000 |

#### Notes:

1. The luminous intensity is measured on the mechanical axis of the lamp package. 2. The optical axis is closely aligned with the package mechanical axis. 3. The optical axis is closely aligned with the package mechanical axis. 4.  $\theta_{1/2}$  is the off-axis angle where the luminous intensity is half the on-axis intensity.

5. Tolerance for each intensity bin limit is  $\pm$  15%.

| Typical<br>Visuring Angle                | Color and Dominant        | Lamps without       | Lamps with Standoffs |      | s Intensity            |
|------------------------------------------|---------------------------|---------------------|----------------------|------|------------------------|
| Viewing Angle                            | Wavelength                | Standoffs on Leads  | on Leads             |      | [1,2,5] @ <b>20 mA</b> |
| 20 <sup>1</sup> /2 (Deg.) <sup>[4]</sup> | (nm), Typ. <sup>[3]</sup> | (Outline Drawing A) | (Outline Drawing B)  | Min. | Max.                   |
| 15°                                      | Amber 590                 |                     | HLMP-EL17-M0000      | 520  | -                      |
|                                          |                           | HLMP-EL15-PS000     |                      | 880  | 2500                   |
|                                          |                           | HLMP-EL15-QSK00     |                      | 1150 | 2500                   |
|                                          |                           | HLMP-EL15-QT000     |                      | 1150 | 3200                   |
|                                          |                           | HLMP-EL15-RU000     |                      | 1500 | 4200                   |
|                                          |                           | HLMP-EL15-TW000     | HLMP-EL17-TW000      | 2500 | 7200                   |
|                                          |                           | HLMP-EL15-TWK00     |                      | 2500 | 7200                   |
|                                          |                           | HLMP-EL15-UX000     | HLMP-EL17-UX000      | 3200 | 9300                   |
|                                          |                           | HLMP-EL15-VY000     | HLMP-EL17-VY000      | 4200 | 12000                  |
|                                          |                           | HLMP-EL15-VYK00     |                      | 4200 | 12000                  |
|                                          |                           | HLMP-EL15-VW000     |                      | 4200 | 7200                   |
|                                          | Orange 605                |                     | HLMP-EJ17-QT000      | 1150 | 3200                   |
|                                          |                           | HLMP-EJ15-PS000     |                      | 880  | 2500                   |
|                                          |                           | HLMP-EJ15-RU000     |                      | 1500 | 4200                   |
|                                          |                           | HLMP-EJ15-SV000     | HLMP-EJ17-SV000      | 1900 | 5500                   |
|                                          | Red-Orange 615            | HLMP-EH15-QT000     |                      | 1150 | 3200                   |
|                                          |                           | HLMP-EH15-RU000     |                      | 1500 | 4200                   |
|                                          |                           | HLMP-EH15-TW000     | HLMP-EH17-TW000      | 2500 | 7200                   |
|                                          |                           | HLMP-EH15-UX000     | HLMP-EH17-UX000      | 3200 | 9300                   |
|                                          | Red 626                   | HLMP-EG15-N0000     | HLMP-EG17-N0000      | 680  | -                      |
|                                          |                           | HLMP-EG15-PS000     |                      | 880  | 2500                   |
|                                          |                           | HLMP-EG15-QT000     | HLMP-EG17-QT000      | 1150 | 3200                   |
|                                          |                           | HLMP-EG15-RU000     | HLMP-EG17-RU000      | 1500 | 4200                   |
|                                          |                           | HLMP-EG15-UX000     | HLMP-EG17-UX000      | 3200 | 9300                   |
|                                          |                           | HLMP-EG15-TW000     | HLMP-EG17-TW000      | 2500 | 7200                   |

#### Notes:

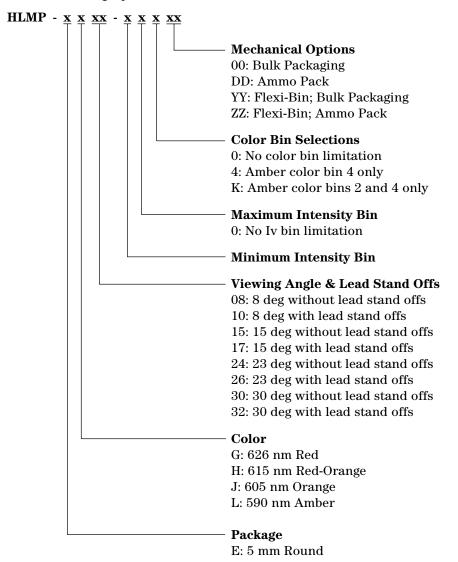
1. The luminous intensity is measured on the mechanical axis of the lamp package.

2. The optical axis is closely aligned with the package mechanical axis of the ramp package. 3. The dominant wavelength,  $\lambda_d$ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp. 4.  $\theta_{1/2}$  is the off-axis angle where the luminous intensity is half the on-axis intensity. 5. Tolerance for each intensity bin limit is ± 15%.

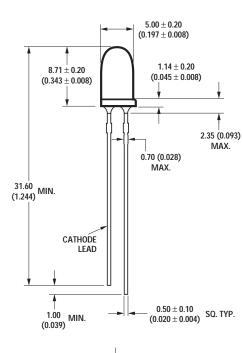
| Typical<br>Viewing Angle                 | Color and Dominant<br>Wavelength | Lamps without<br>Standoffs on Leads | Lamps with Standoffs<br>on Leads |      | s Intensity<br>[1,2,5] @ 20 mA |
|------------------------------------------|----------------------------------|-------------------------------------|----------------------------------|------|--------------------------------|
| 2θ <sup>1</sup> /2 (Deg.) <sup>[4]</sup> | (nm), Typ. <sup>[3]</sup>        | (Outline Drawing A)                 | (Outline Drawing B)              | Min. | ⊥ Max.                         |
| 23° Ar                                   | Amber 590                        | HLMP-EL24-L0000                     | HLMP-EL26-L0000                  | 400  | -                              |
|                                          |                                  | HLMP-EL24-MQ000                     |                                  | 520  | 1500                           |
|                                          |                                  | HLMP-EL24-NR000                     |                                  | 680  | 1900                           |
|                                          |                                  | HLMP-EL24-PS000                     | HLMP-EL26-PS000                  | 880  | 2500                           |
|                                          |                                  | HLMP-EL24-QR000                     |                                  | 1150 | 1900                           |
|                                          |                                  | HLMP-EL24-QRK00                     |                                  | 1150 | 1900                           |
|                                          |                                  | HLMP-EL24-QS400                     |                                  | 1150 | 2500                           |
|                                          |                                  | HLMP-EL24-QT000                     | HLMP-EL26-QT000                  | 1150 | 3200                           |
|                                          |                                  | HLMP-EL24-RU000                     | HLMP-EL26-RU000                  | 1150 | 4200                           |
|                                          |                                  | HLMP-EL24-RUK00                     |                                  | 1150 | 4200                           |
|                                          |                                  | HLMP-EL24-SV000                     | HLMP-EL26-SV000                  | 1900 | 5500                           |
|                                          |                                  | HLMP-EL24-SUK00                     |                                  | 1900 | 4200                           |
|                                          |                                  | HLMP-EL24-SU400                     |                                  | 1900 | 4200                           |
|                                          |                                  | HLMP-EL24-SVK00                     |                                  | 1900 | 5500                           |
|                                          |                                  | HLMP-EL24-TW000                     | HLMP-EL26-TW000                  | 2500 | 7200                           |
|                                          |                                  | HLMP-EL24-TWK00                     |                                  | 2500 | 7200                           |
|                                          | Orange 605                       | HLMP-EJ24-QT000                     |                                  | 1150 | 3200                           |
|                                          | Red-Orange 615                   | HLMP-EH24-PS000                     | HLMP-EH26-PS000                  | 880  | 2500                           |
|                                          |                                  | HLMP-EH24-QT000                     |                                  | 1150 | 3200                           |
|                                          |                                  | HLMP-EH24-RU000                     |                                  | 1500 | 4200                           |
|                                          |                                  | HLMP-EH24-SV000                     | HLMP-EH26-SV000                  | 1900 | 5500                           |
|                                          | Red 626                          | HLMP-EG24-M0000                     | HLMP-EG26-M0000                  | 520  | -                              |
|                                          |                                  | HLMP-EG24-PS000                     | HLMP-EG26-PS000                  | 880  | 2500                           |
|                                          |                                  | HLMP-EG24-QT000                     |                                  | 1150 | 4200                           |
|                                          |                                  | HLMP-EG24-RU000                     | HLMP-EG26-RU000                  | 1500 | 4200                           |

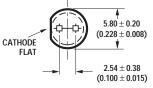
### Notes:

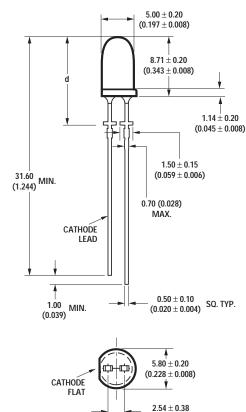
1. The luminous intensity is measured on the mechanical axis of the lamp package.


2. The optical axis is closely aligned with the package mechanical axis of the ramp package. 3. The dominant wavelength,  $\lambda_d$ , is derived from the CIE Chromaticity Diagram and represents the color of the lamp. 4.  $\theta_{1/2}$  is the off-axis angle where the luminous intensity is half the on-axis intensity. 5. Tolerance for each intensity bin limit is ± 15%.

| Typical<br>Viewing Angle    | Color and Dominant<br>Wavelength | Lamps without<br>Standoffs on Leads | Lamps with Standoffs<br>on Leads |      | s Intensity<br><sup>[1,2,5]</sup> @ 20 mA |
|-----------------------------|----------------------------------|-------------------------------------|----------------------------------|------|-------------------------------------------|
| 201/2 (Deg.) <sup>[4]</sup> | (nm), Typ. <sup>[3]</sup>        | (Outline Drawing A)                 | (Outline Drawing B)              | Min. | Max.                                      |
| 30°                         | Amber 590                        | HLMP-EL30-K0000                     | HLMP-EL32-K0000                  | 310  | -                                         |
|                             |                                  | HLMP-EL30-MQ000                     |                                  | 520  | 1500                                      |
|                             |                                  |                                     | HLMP-EL32-NR000                  | 680  | 1900                                      |
|                             |                                  | HLMP-EL30-PQ000                     |                                  | 880  | 1500                                      |
|                             |                                  | HLMP-EL30-PR400                     |                                  | 880  | 1900                                      |
|                             |                                  | HLMP-EL30-PS000                     | HLMP-EL32-PS000                  | 880  | 2500                                      |
|                             |                                  | HLMP-EL30-PSK00                     |                                  | 880  | 2500                                      |
|                             |                                  | HLMP-EL30-QT000                     | HLMP-EL32-QT000                  | 1150 | 3200                                      |
|                             |                                  | HLMP-EL30-QTK00                     |                                  | 1150 | 3200                                      |
|                             |                                  | HLMP-EL30-ST000                     |                                  | 1900 | 3200                                      |
|                             |                                  | HLMP-EL30-SU400                     |                                  | 1900 | 4200                                      |
|                             |                                  | HLMP-EL30-SUK00                     |                                  | 1900 | 4200                                      |
|                             |                                  | HLMP-EL30-STK00                     |                                  | 1900 | 3200                                      |
|                             |                                  | HLMP-EL30-SV000                     | HLMP-EL32-SV000                  | 1900 | 5500                                      |
|                             |                                  | HLMP-EL30-SVK00                     |                                  | 1900 | 5500                                      |
|                             | Orange 605                       | HLMP-EJ30-NR000                     |                                  | 680  | 1900                                      |
|                             |                                  | HLMP-EJ30-PS000                     | HLMP-EJ32-PS000                  | 880  | 2500                                      |
|                             | Red-Orange 615                   | HLMP-EH30-MQ000                     | HLMP-EH32-MQ000                  | 520  | 1500                                      |
|                             |                                  | HLMP-EH30-NR000                     | HLMP-EH32-NR000                  | 680  | 1900                                      |
|                             |                                  | HLMP-EH30-PS000                     | HLMP-EH32-PS000                  | 880  | 2500                                      |
|                             |                                  | HLMP-EH30-QT000                     | HLMP-EH32-QT000                  | 1150 | 4200                                      |
|                             |                                  | HLMP-EH30-RU000                     | HLMP-EH32-RU000                  | 1500 | 4200                                      |
|                             | Red 626                          | HLMP-EG30-K0000                     | HLMP-EG32-K0000                  | 270  | -                                         |
|                             |                                  | HLMP-EG30-KN000                     |                                  | 310  | 880                                       |
|                             |                                  | HLMP-EG30-MQ000                     | HLMP-EG32-MQ000                  | 520  | 1500                                      |
|                             |                                  | HLMP-EG30-NQ000                     |                                  | 680  | 1500                                      |
|                             |                                  | HLMP-EG30-NR000                     | HLMP-EG32-NR000                  | 680  | 1900                                      |
|                             |                                  | HLMP-EG30-PQ000                     |                                  | 880  | 1500                                      |
|                             |                                  | HLMP-EG30-PR000                     |                                  | 880  | 1900                                      |
|                             |                                  | HLMP-EG30-PS000                     |                                  | 880  | 2500                                      |
|                             |                                  | HLMP-EG30-QT000                     | HLMP-EG32-QT000                  | 1150 | 3200                                      |


Notes:


1. The luminous intensity is measured on the mechanical axis of the lamp package. 2. The optical axis is closely aligned with the package mechanical axis. 3. The dominant wavelength,  $\lambda_{d'}$  is derived from the CIE Chromaticity Diagram and represents the color of the lamp. 4.  $\theta_{1/2}$  is the off-axis angle where the luminous intensity is half the on-axis intensity. 5. Tolerance for each intensity bin limit is ± 15%.


### Part Numbering System



## Package Dimensions







В

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

2. LEADS ARE MILD STEEL, SOLDER DIPPED.

3. TAPERS SHOWN AT TOP OF LEADS (BOTTOM OF LAMP PACKAGE) INDICATE AN EPOXY MENISCUS THAT MAY EXTEND ABOUT 1 mm (0.040 in.) DOWN THE LEADS.

4. FOR DOME HEIGHTS ABOVE LEAD STAND-OFF SEATING PLANE, d, LAMP PACKAGE B, SEE TABLE.

| PART NO.  | d                                                                                    |
|-----------|--------------------------------------------------------------------------------------|
| HLMP-XX10 | $\begin{array}{c} 12.37 \pm 0.25 \\ \textbf{(}0.487 \pm 0.010\textbf{)} \end{array}$ |
| HLMP-XX17 | $\begin{array}{c} 12.42 \pm 0.25 \\ \textbf{(}0.489 \pm 0.010\textbf{)} \end{array}$ |
| HLMP-XX26 | $\begin{array}{c} 12.52 \pm 0.25 \\ \textbf{(}0.493 \pm 0.010\textbf{)} \end{array}$ |
| HLMP-XX32 | $\begin{array}{c} 11.96 \pm 0.25 \\ \textbf{(0.471} \pm 0.010\textbf{)} \end{array}$ |

 $(0.100 \pm 0.015)$ 

Α

## Absolute Maximum Ratings at $T_A = 25^\circ C$

| DC Forward Current <sup>[1,2,3]</sup>        |                                     |
|----------------------------------------------|-------------------------------------|
| Peak Pulsed Forward Current <sup>[2,3]</sup> | 100 mA                              |
| Average Forward Current <sup>[3]</sup>       |                                     |
| Reverse Voltage ( $I_R = 100 \ \mu A$ )      |                                     |
| LED Junction Temperature                     |                                     |
| Operating Temperature                        | $-40^{\circ}$ C to $+100^{\circ}$ C |
| Storage Temperature                          | $-40^{\circ}$ C to $+120^{\circ}$ C |

#### Notes:

1. Derate linearly as shown in Figure 4.

2. For long term performance with minimal light output degradation, drive currents between 10 mA and 30 mA are recommended. For more information on recommended drive conditions, please refer to Application Brief I-024.

3. Operating at currents below 1 mA is not recommended. Please contact your local representative for further information.

| Parameter                               | Symbol                 | Min. | Тур. | Max. | Units | Test Conditions                            |
|-----------------------------------------|------------------------|------|------|------|-------|--------------------------------------------|
| Forward Voltage                         | -                      |      |      |      |       | I <sub>F</sub> = 20 mA                     |
| Amber ( $\lambda_d = 590$ nm)           |                        |      | 2.02 |      |       |                                            |
| Orange ( $\lambda_d = 605 \text{ nm}$ ) | V <sub>F</sub>         |      | 1.98 | 2.4  | V     |                                            |
| Red-Orange ( $\lambda_{d} = 615$ nm)    | ·                      |      | 1.94 |      |       |                                            |
| Red ( $\lambda_d$ = 626 nm)             |                        |      | 1.90 |      |       |                                            |
| Reverse Voltage                         | V <sub>R</sub>         | 5    | 20   |      | V     | I <sub>F</sub> = 100 μA                    |
| Peak Wavelength:                        |                        |      |      |      |       | Peak of Wavelength of                      |
| Amber ( $\lambda_d = 590$ nm)           |                        |      | 592  |      |       | Spectral Distribution                      |
| Orange ( $\lambda_d = 605 \text{ nm}$ ) | $\lambda_{PEAK}$       |      | 609  |      | nm    | at $I_F = 20 \text{ mA}$                   |
| Red-Orange ( $\lambda_d$ = 615 nm)      |                        |      | 621  |      |       |                                            |
| Red ( $\lambda_{d}$ = 626 nm)           |                        |      | 635  |      |       |                                            |
| Spectral Halfwidth                      | $\Delta \lambda_{1/2}$ |      | 17   |      | nm    | Wavelength Width at                        |
|                                         |                        |      |      |      |       | Spectral Distribution                      |
|                                         |                        |      |      |      |       | <sup>1</sup> / <sub>2</sub> Power Point at |
|                                         |                        |      |      |      |       | I <sub>F</sub> = 20 mA                     |
| Speed of Response                       | τ <sub>s</sub>         |      | 20   |      | ns    | Exponential Time                           |
|                                         |                        |      |      |      |       | Constant, e <sup>-t/ts</sup>               |
| Capacitance                             | С                      |      | 40   |      | рF    | $V_{F} = 0, f = 1 MHz$                     |
| Thermal Resistance                      | $R\theta_{J-PIN}$      |      | 240  |      | °C/W  | LED Junction-to-Cathode                    |
|                                         |                        |      |      |      |       | Lead                                       |
| Luminous Efficacy <sup>[1]</sup>        |                        |      |      |      |       | Emitted Luminous                           |
| Amber ( $\lambda_d$ = 590 nm)           |                        |      | 480  |      |       | Power/Emitted Radiant                      |
| Orange ( $\lambda_d$ = 605 nm)          | $\eta_{ m v}$          |      | 370  |      | lm/W  | Power                                      |
| Red-Orange ( $\lambda_{d}$ = 615 nm)    |                        |      | 260  |      |       |                                            |
| Red ( $\lambda_d$ = 626 nm)             |                        |      | 150  |      |       |                                            |
| Luminous Flux                           |                        |      | 500  |      | mlm   | $I_F = 20 \text{ mA}$                      |
| Luminous Efficiency                     |                        |      |      |      |       | Emitted Luminous                           |
| Amber                                   |                        |      | 12   |      | lm/W  | Flux/Electrical Power                      |
| Orange                                  |                        |      | 13   |      |       |                                            |
| Red-Orange                              |                        |      | 13   |      |       |                                            |
| Red                                     |                        |      | 13   |      |       |                                            |

## Electrical/Optical Characteristics at $T_A = 25^{\circ}C$

#### Note:

1. The radiant intensity,  $I_e$ , in watts per steradian, may be found from the equation  $I_e = I_v / \eta_v$ , where  $I_v$  is the luminous intensity in candelas and  $\eta_v$  is the luminous efficacy in lumens/watt.

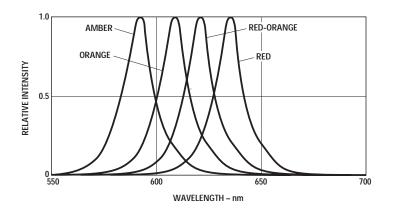



Figure 1. Relative intensity vs. peak wavelength

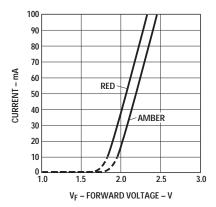



Figure 2. Forward current vs. forward voltage

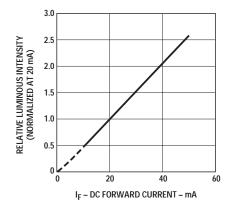



Figure 3. Relative luminous intensity vs. forward current

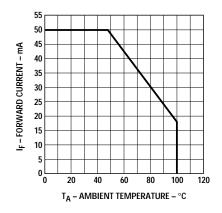



Figure 4. Maximum forward current vs. ambient temperature

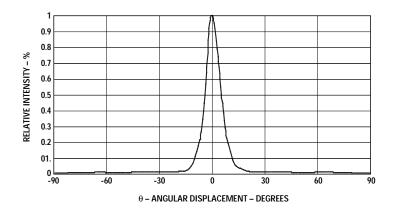



Figure 5. Representative spatial radiation pattern for 8° viewing angle lamps

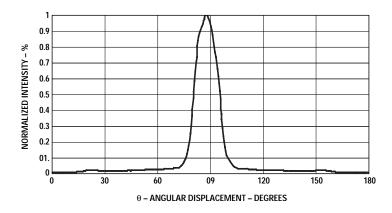



Figure 6. Representative spatial radiation pattern for  $15^\circ$  viewing angle lamps

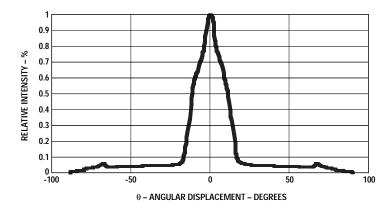



Figure 7. Representative spatial radiation pattern for  $23^\circ$  viewing angle lamps

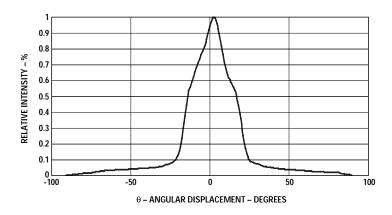



Figure 8. Representative spatial radiation pattern for 30° viewing angle lamps

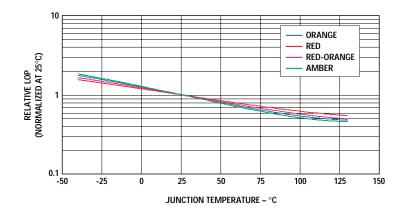



Figure 9. Relative light output vs. junction temperature

## Intensity Bin Limits (mcd at 20 mA)

| Bin Name | Min.  | Max.  |
|----------|-------|-------|
| К        | 310   | 400   |
| L        | 400   | 520   |
| M        | 520   | 680   |
| N        | 680   | 880   |
| D        | 880   | 1150  |
| 2        | 1150  | 1500  |
| R        | 1500  | 1900  |
| 5        | 1900  | 2500  |
| Г        | 2500  | 3200  |
| J        | 3200  | 4200  |
| 1        | 4200  | 5500  |
| Ν        | 5500  | 7200  |
| K        | 7200  | 9300  |
| (        | 9300  | 12000 |
| 7        | 12000 | 16000 |
| 1        | 16000 | 21000 |
| 2        | 21000 | 27000 |

Tolerance for each bin limit is  $\pm$  15%.

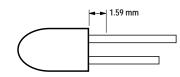
### Amber Color Bin Limits (nm at 20 mA)

| Bin Name | Min.  | Max.  |
|----------|-------|-------|
| 1        | 584.5 | 587.0 |
| 2        | 587.0 | 589.5 |
| 4        | 589.5 | 592.0 |
| 6        | 592.0 | 594.5 |
|          |       |       |

Tolerance for each bin limit is  $\pm$  0.5 nm.

#### Note:

1. Bin categories are established for classification of products. Products may not be available in all bin categories.


### Precautions

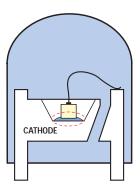
### Lead Forming

- The leads of an LED lamp may be preformed or trimmed to applicable length prior to insertion and soldering on PC board.
- If lead forming is required before soldering, care must be taken to avoid any excessive mechanical stress that is induced into the LED package. Otherwise, trim the leads to applicable length at room temperature after soldering process. The solder joint formed will absorb the mechanical stress, due to the lead cutting, from flowing to the wire bonding area and LED chip die attach.
- For better control, it is recommended to use proper tool to precisely form and cut the leads to applicable length rather than doing it manually.

### **Soldering Condition**

- Extra care must be taken during PCB assembly and soldering process to prevent damage to the LED component.
- The closest distance of manual soldering from the soldering heat source (soldering iron's tip) to the body is 1.59 mm. Damage might occur if the LED soldering distance is less than 1.59 mm. Please refer to the illustration below.




### **Recommended Soldering Condition**

|                      | •                 |                          |
|----------------------|-------------------|--------------------------|
|                      | Wave<br>Soldering | Manual<br>Solder Dipping |
| Pre-Heat Temperature | 105°C max.        | -                        |
| Pre-Heat Time        | 30 sec max.       | -                        |
| Peak Temperature     | 250°C max.        | 260°C max.               |
| Dwell Time           | 3 sec max.        | 5 sec max.               |

• Wave soldering parameter must be set and maintained according to the recommended soldering condition. Customer is advised to daily check on the soldering profile to ensure that the soldering profile is always corresponding to Avago recommended soldering condition.

#### Notes:

- 1. PCB with different size and design (component density) will have different heat mass (heat capacity). This might cause a change in temperature experienced by the board if same wave soldering setting is used. So, it is recommended to recalibrate the soldering profile again before loading a new type of PCB.
- 2. Avago Technologies' high brightness LEDs use a high efficiency LED die with single wire bond, as shown below. Customer is advised to take extra precaution during wave soldering to ensure that the maximum wave temperature does not exceed 250°C. Over-stressing the LED during soldering process might cause premature failure to the LED due to delamination.



**Note:** Electrical connection between bottom surface of LED die and the lead frame material through conductive paste of solder.

• Special attention must be given to board fabrication, solder masking, surface platting and lead holes size and component orientation to assure the solderability.

### Recommended PC Board Plated Through Holes Size for LED Component Leads

| LED Component<br>Lead Size | Diagonal     | Plated Through<br>Hole Diameter |
|----------------------------|--------------|---------------------------------|
| 0.457 x 0.457 mm           | 0.646 mm     | 0.976 to 1.078 mm               |
| (0.018 x 0.018 inch)       | (0.025 inch) | (0.038 to 0.042 inch)           |
| 0.508 x 0.508 mm           | 0.718 mm     | 1.049 to 1.150 mm               |
| (0.020 x 0.020 inch)       | (0.028 inch) | (0.041 to 0.045 inch)           |

**Note:** Refer to Application Note AN1027 for more information on soldering LED components.

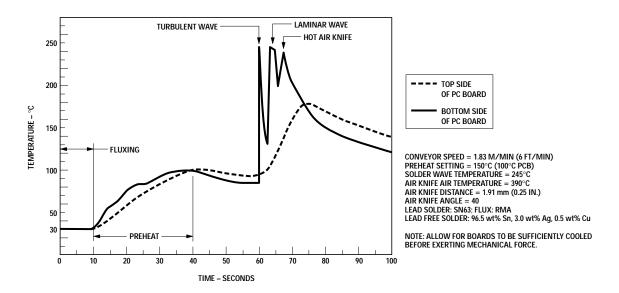
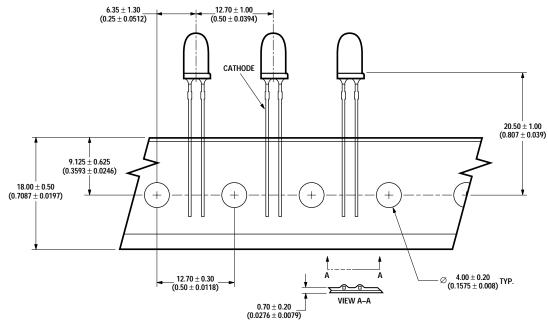
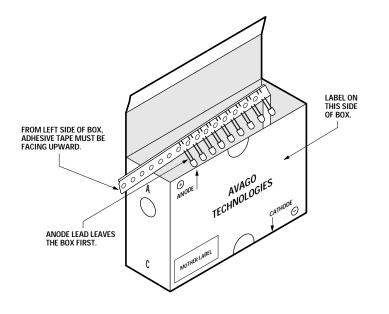




Figure 10. Recommended wave soldering profile


### **Ammo Pack Drawing**



ALL DIMENSIONS IN MILLIMETERS (INCHES).

NOTE: THE AMMO-PACKS DRAWING IS APPLICABLE FOR PACKAGING OPTION -DD & -ZZ AND REGARDLESS OF STANDOFF OR NON-STANDOFF.

### Packaging Box for Ammo Packs



NOTE: THE DIMENSION FOR AMMO PACK IS APPLICABLE FOR THE DEVICE WITH STANDOFF AND WITHOUT STANDOFF.

### DISCLAIMER

AVAGO'S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.

For product information and a complete list of distributors, please go to our website:

www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-4368EN AV02-0373EN November 20, 2007

