Application Note 5241

Introduction

The ADJD-J823 controls the proportion of light from three color light sources. These three color light sources come from red LED, green LED and blue LED. Each color can be a single LED or an array of LEDs. These light sources are thoroughly mixed to produce a resultant color. The mixing is done using optical components such as light guides or light panels. There is an optical feedback from the integrated color sensors. The optical feedback allows the ADJD-J823 controller to produce a resultant color accurately. The color is maintained by adjusting each of the pulse width modulation, PWMR, PWMG, and PWMB of the light sources.

Serial interface protocol

The programming is done through the serial interface. The serial interface protocol details are described in the datasheet. The device address consists of the most significant 7-bit slave device address and a R/W bit. The 7-bit slave device address is 58H or decimal 88. Thus, the device address for writing is B0H and for reading is B1H. The dataflow diagram for the serial communication is as follows.

For Write, S [Dw] a [R] a [Vw] a P

For Read, S [Dw] a [R] a Sr [Dr] a [Vr] n P

KEY Description

- S Start transition from host controller
- a Acknowledge bit from device
- n Not acknowledge bit sent by host controller to device
- Sr Repeat start transition
- P Stop transition from host controller
- [Dw] ADJD-J823 device write address byte = B0H
- [Dr] ADJD-J823 device read address byte = B1H
- [R] Device register address byte in the write or read operation
- [Vw] Value to write to device register address 'R'
- [Vr] Value to read from device register address 'R'

Example:

a) To write a value of 01H to CTRL2 register (address 02H), the datagram is

S [B0] a [02] a [01] a [P]

b) To read CTRL2 register (address 02H), the datagram is

S [B0] a [02] a S_r [B1] a [V_r] n P

Key:

- S Start transition
- a Acknowledge bit receive from device
- n Not acknowledge bit send to device
- Sr Repeat start transition
- P Stop transition
- [B0] ADJD-J823 device write address byte = B0H
- [B1] ADJD-J823 device read address byte = B1H
- [02] CTRL2 register address = 02H
- [01] Value 01H to write to CTRL2 register
- [V_r] Byte value read from device

Operating Modes

There are two operating modes:

- a) Open Loop mode. This mode is for calibration or open loop control of the LED light sources.
- b) Close Loop mode. This mode is also known as normal operating mode with optical feedback.

Implementation Method

There are three types of implementation. They are dedicated EEPROM in stand-alone system, dedicated EEPROM in interactive mode and independent EEPROM or system without dedicated EEPROM.

Dedicated EEPROM system

The system with dedicated EEPROM is highly recommended to simplify programming effort. The dedicated EEPROM used must have I2C bus interface. The EEPROM I2C 7-bit device address is not user configurable and is fixed to 50H. I.e. EEPROM device write address is A0H and the read address is A1H.

Programming

Before the ADJD-J823 can be used in controlling color and brightness, a one time calibration is generally required to obtain setup and calibration data values. These values including offset, frequency data need to be saved in non volatile memory, as they need to be read back during normal operation. The method to perform calibration is described in calibration procedure section.

After calibration, users need to read back the saved offset, frequency, setup and calibration data from non volatile memory. The offset, frequency, setup and calibration data from non-volatile memory are loaded to the ADJD-J823 for normal operation with optical feedback. A color set point is selected to display the color and brightness desired. This method is described in basic operating procedure. For system, with dedicated EEPROM, the AUTO LOAD operating procedure can be used after the set up for auto load is done.

Calibration Procedure

The detail flow chart for sensor and camera measurement with LED duty values = 3900 is shown in figure 2.

Figure 2. Sensor & Camera measurement flow chart

Calibration Procedure

The procedure for calibration is as follows.

1) First perform an external power on reset or software reset by writing CTRL1 register with 01H.

Bit	7	6	5	4	3	2	1	0
Mnemonic	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	0	0	0	0	0	1

Figure 3. CTRL1 bit format. Address 01H

2) Wait for the reset sequence to be completed. The status register (address 22H) can be read to verify that the INIT (bit 0) is set to "0" before proceeding.

Bit	7	6	5	4	3	2	1	0
Mnemonic		RSV					NORM	INIT
Value	0	0	0	0	0	0	1	0

Figure 4. STATUS register. Address 22H

After power on reset or software reset, the DUTYR_LO, DUTYR_HI, DUTYG_LO, DUTYG_HI, DUTYB_LO and DUTYB_HI registers are zero. The PWME bit of CONFIG1 register is also set to '0'. This should turn off all the red, green and blue LEDs for active high LED driver design.

However, for active low LED driver design, all the red, green and blue LEDs will turn on after power or software reset.

3) Write CONFIG1 register to set up PWML bit depending on the LED driver used.

Bit	7	6	5	4	3	2	1	0
Mnemonic		RSV					PWML	PWME
Value	0	0	0	0	0	0	Note a	0

Figure 5. CONFIG1 format. Address 03H

Note a: Set PWML bit: '0' for PWM active high, '1' for PWM active low.

4) Write CONFIG2 register with 01H to set the device to open loop mode so that the calibration can be done.

Bit	7	6	5	4	3	2	1	0	
Mnemonic		RSV							
Value	0	0	0	0	0	0	0	1	

Figure 6. CONFIG2 format. Address 04H

The status register (address 22H) can be read to verify that the OPENL (bit 2) is set to "1" before proceeding with the calibration.

5) Determine the PWM frequency.

Usually, the selection of the PWM frequency is not critical. Selection of the PWM frequency depends on the frequency response and the rise and fall time of the LED drivers.

The power on or reset value for PWMFREQ register value is zero. At the nominal clock frequency of 26 MHz, the PWM frequency is 6.35 kHz. The PWM frequency is related to the PWMFREQ register by the following formula.

PWM Frequency = Clock Frequency (PWMFREQ +1) x 4096

Example. If the operating PWM frequency is 907Hz, the PWMFREQ register value is six. Write the PWMFREQ register with 06H.

Bit	7	6	5	4	3	2	1	0
Mnemonic	PWMFREQ							
Value	0	0	0	0	0	1	1	0

Figure 7. PWMFREQ format. Address 05H

6) Determine the sensor sampling frequency. The selected sampling frequency must ensure that the PWM frequency divided by the sampling frequency is at least four. i.e. The PWM frequency must be at least four times the sampling frequency.

The power on or reset value for SAMPFREQ register (address 06H – 07H) is 7530H or decimal 30000. At the nominal clock frequency of 26 MHz, the sensor sampling frequency is 108Hz. The sampling frequency is related to SAMP-FREQ by the following equation.

Sampling Frequency = $\frac{\text{Clock Frequency}}{\text{SAMPFREQ x 8}}$

Example. If the sensor sampling frequency required is 86.6Hz, the SAMPFREQ register value is 37500 or 927CH. Write SAMPFREQ_LO with 7CH and SAMPFREQ_HI with 92H.

Bit	7	6	5	4	3	2	1	0	
Mnemonic		SAMPFREQ_LO							
Value	0	1	1	1	1	1	0	0	

Figure 8. SAMPFREQ_LO format. Address 06H

Bit	7	6	5	4	3	2	1	0
Mnemonic	SAMPFREQ_HI							
Value	1	0	0	1	0	0	1	0

Figure 9. SAMPFREQ_HI format. Address 07H

7) Determine the SENACT value. **SENACT value must be an integer value from 0 to 9.**

The sensor acquisition constant, SENACT value is given by:

SENACT =
$$1/3 * \{ \frac{\text{SAMPFREQ}}{512(\text{PWMFREQ} + 1)} - 1 \} - 1$$

This value must be rounded down to the nearest integer. If the value is less than 0, the PWM frequency and the sampling frequency must be changed so that the PWM frequency to sampling frequency ratio is at least 4. Use a value of 9, if the calculated SENACT value is greater than 9.

Example. Given that PWMFREQ = 4 and SAMPFREQ = 37500, SENACT = 3.549 or 3 (rounded down to nearest integer). Write SENACT register with 03H.

Bit	7	6	5	4	3	2	1	0	
Mnemonic		SENACT							
Value	0	0	0	0	0	0	1	1	

Figure 10. SENACT format. Address A9H

8) Write CONFIG1 register to set the PWME (bit 0) to '1' to turn on the PWM generator.

Bit	7	6	5	4	3	2	1	0
Mnemonic			RSV	AUTOL	PWML	PWME		
Value	0	0	0	0	0	0	Note a	1

Figure 11. CONFIG1 format. Address 03H

Note a: Set PWML bit: '0' for PWM active high, '1' for PWM active low.

9) Write CTRL2 register with 08H to set the SAGA (bit 3) to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	RS	5V	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	1	0	0	0

Figure 12. CTRL2 bit format. Address 02H

The sensor automatic gain adjustment is performed.

Wait for the sensor automatic gain adjustment to be completed. Alternatively, read the CTRL2 register to verify that the SAGA (bit 3) is '0' before proceeding to next step.

10) Read the ERROR register (address 23H). Verify that NSSR (bit 7) is '0' before proceeding to next step.

Bit	7	6	5	4	3	2	1	0
Mnemonic	NSSR	RSV	NACK	DIM	BRIGHT	RSV	NLOCK	RANGE
Value	0	Х	Х	Х	Х	Х	Х	Х

Figure 13. ERROR bit format. Address 23H

If NSSR (bit 7) is '1', check the SENACT register value by reviewing step 5, 6 and 7.

11) Offsets are sensor channel values when all LEDs are off. Write CTRL2 register with 04H to acquire offset.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	1	0	0

Figure 14. CTRL2 bit format. Address 02H

12) Read CTRL2 register. When GOFS (bit 2) goes '0', offsets are stored in OFFSET_X, OFFSET_Y and OFFSET_Z register.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	5V	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	0	0	0

Figure 15. CTRL2 bit format. Address 02H

13) Write CTRL2 register with 08H to set the SAGA (bit 3) to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	RS	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	1	0	0	0

Figure 16. CTRL2 bit format. Address 02H

The sensor automatic gain adjustment is performed.

Wait for the sensor automatic gain adjustment to be completed. Alternatively, read the CTRL2 register to verify that the SAGA (bit 3) is '0' before proceeding to next step.

14) Read the ERROR register (address 23H). Verify that NSSR (bit 7), BRIGHT (bit 3) and DIM (bit 4) are '0' before proceeding to next step.

Bit	7	6	5	4	3	2	1	0
Mnemonic	NSSR	RSV	NACK	DIM	BRIGHT	RSV	NLOCK	RANGE
Value	0	Х	Х	0	0	Х	Х	Х

Figure 17. ERROR bit format. Address 23H

If BRIGHT (bit 3) is '1', the following actions can be taken

- a) Decrease the peak current of the saturated channel.
- b) Review the sensor placement or increase the distance between the sensing area and the sensor. Ensure that there is no external ambient light interference if this is done.
- c) Review the filter design or insert neutral density gray filter.

If DIM (bit 4) is '1', the following actions can be taken

- a) Increase the peak current of the dim channel.
- b) Review the sensor placement or decrease the distance between the sensing area and the sensor.
- c) Review the filter design.
- d) Add more LEDs to the dim channel.
- e) Review frequency selection so that the SENACT value is higher and not more than 9.

If NSSR (bit 7) is '1' check SENACT value.

Go to step 5 after actions are done.

15) Write DUTYB_LO with 3CH and DUTYB_HI with 0FH. Write DUTYR_HI, DUTYR_LO, DUTYG_HI and DUTYG_LO with 00H. This will only turn on the blue LEDs. Red and green LEDs are turned off.

Bit	7	6	5	4	3	2	1	0
DUTYB_LO Value	0	0	1	1	1	1	0	0
DUTYB_HI Value	0	0	0	0	1	1	1	1
DUTYG_LO Value	0	0	0	0	0	0	0	0
DUTYG_HI Value	0	0	0	0	0	0	0	0
DUTYR_LO Value	0	0	0	0	0	0	0	0
DUTYR_HI Value	0	0	0	0	0	0	0	0

Figure 18. DUTY registers. Address 24H to 29H

16) Write CTRL2 register with 80H to set UD_DUTY to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	1	0	0	0	0	0	0	0

Figure 19. CTRL2 format. Address 02H

When UD_DUTY (bit 7) of CTRL2 register goes to '0', the duty values are updated.

17) Write CTRL2 register with 02H to set GSSR to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	0	1	0

Figure 20. CTRL2 format. Address 02H

18) When GSSR (bit 1) of CTRL2 register goes to '0', read SENSOR_ADCZ_LO, SENSOR_ADCZ_HI, SENSOR_ADCY_LO, SENSOR_ADCY_HI, SENSOR_ADCX_LO, and SENSOR_ADCX_HI. These values are obtained when blue LEDs are on.

These sensor values need to be written in input registers in table 1 before calibration data processing.

Table 1. Sensor measurement and register storage before calibration data processing when blue LEDs are on

SENSOR measurement	Input register to store before processing
SENSOR_ADCZ_LO	CAL_SMZB_LO
SENSOR_ADCZ_HI	CAL_SMZB_HI
SENSOR_ADCY_LO	CAL_SMYB_LO
SENSOR_ADCY_HI	CAL_SMYB_HI
SENSOR_ADCX_LO	CAL_SMXB_LO
SENSOR_ADCX_HI	CAL_SMXB_HI

19) Obtained the CIE camera measurement in CIE Y, x, y or X, Y, Z. If the measurement is in Y, x, y, it should be converted to X, Y, Z, using the equations below.

X = (Y/y) *x Z = (Y/y) *(1 - x - y)Y = Y 20) Write DUTYG_LO with 3CH. Write DUTYG_HI with 0FH. Write DUTYR_HI, DUTYR_LO, DUTYB_HI and DUTYB_LO with 00H. This will only turn on the green LEDs. Red and blue LEDs are turned off.

Bit	7	6	5	4	3	2	1	0
DUTYB_LO Value	0	0	0	0	0	0	0	0
DUTYB_HI Value	0	0	0	0	0	0	0	0
DUTYG_LO Value	0	0	1	1	1	1	0	0
DUTYG_HI Value	0	0	0	0	1	1	1	1
DUTYR_LO Value	0	0	0	0	0	0	0	0
DUTYR_HI Value	0	0	0	0	0	0	0	0

Figure 21. DUTY registers. Address 24H to 29H

21) Write CTRL2 register with 80H to set UD_DUTY to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	0	1	0

Figure 22. CTRL2 format. Address 02H

When UD_DUTY (bit 7) of CTRL2 register goes to '0', the duty values are updated.

22) Write CTRL2 register with 02H to set GSSR to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	0	1	0

Figure 23. CTRL2 format. Address 02H

23) When GSSR (bit 1) of CTRL2 register goes to '0', read SENSOR_ADCZ_LO, SENSOR_ADCZ_HI, SENSOR_ADCY_LO, SENSOR_ADCY_HI, SENSOR_ADCX_LO, and SENSOR_ADCX_HI. These values are obtained when green LEDs are on.

These sensor values need to be written in input registers in table 2 before calibration data processing.

Table 2.	Sensor measurement and	l register stora	ge before calibration	n data processin	g when green LEDs are on

SENSOR measurement	Input register to store before processing
SENSOR_ADCZ_LO	CAL_SMZG_LO
SENSOR_ADCZ_HI	CAL_SMZG_HI
SENSOR_ADCY_LO	CAL_SMYG_LO
SENSOR_ADCY_HI	CAL_SMYG_HI
SENSOR_ADCX_LO	CAL_SMXG_LO
SENSOR_ADCX_HI	CAL_SMXG_HI

- 24) Obtained the CIE camera measurement in CIE Y, x, y or X, Y, Z. If the measurement is in Y, x, y, it should be converted to X, Y, Z.
- 25) Write DUTYR_LO with 3CH. Write DUTYR_HI with 0FH. Write DUTYG_HI, DUTYG_LO, DUTYB_HI and DUTYB_LO with 00H. This will only turn on the red LEDs. Green and blue LEDs are turned off.

Bit	7	6	5	4	3	2	1	0
DUTYB_LO Value	0	0	0	0	0	0	0	0
DUTYB_HI Value	0	0	0	0	0	0	0	0
DUTYG_LO Value	0	0	0	0	0	0	0	0
DUTYG_HI Value	0	0	0	0	0	0	0	0
DUTYR_LO Value	0	0	1	1	1	1	0	0
DUTYR_HI Value	0	0	0	0	1	1	1	1

Figure 24. DUTY registers. Address 24H to 29H

26) Write CTRL2 register with 80H to set UD_DUTY to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	1	0	0	0	0	0	0	0

Figure 25. CTRL2 format. Address 02H

When UD_DUTY (bit 7) of CTRL2 register goes to '0', the duty values are updated.

27) Write CTRL2 register with 02H to set GSSR to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	RS	5V	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	0	1	0

Figure 26. CTRL2 format. Address 02H

28) When GSSR (bit 1) of CTRL2 register goes to '0', read SENSOR_ADCZ_LO, SENSOR_ADCZ_HI, SENSOR_ADCY_LO, SENSOR_ADCY_HI, SENSOR_ADCX_LO, and SENSOR_ADCX_HI. These values are obtained when red LEDs are on.

These sensor values need to be written in input registers in table 3 before calibration data processing.

Table 3. Sensor measurement and register storage before calibration data processing when red LEDs are on

SENSOR measurement	Register to store for processing
SENSOR_ADCZ_LO	CAL_SMZR_LO
SENSOR_ADCZ_HI	CAL_SMZR_HI
SENSOR_ADCY_LO	CAL_SMYR_LO
SENSOR_ADCY_HI	CAL_SMYR_HI
SENSOR_ADCX_LO	CAL_SMXR_LO
SENSOR_ADCX_HI	CAL_SMXR_HI

- 29) Obtained the CIE camera measurement in CIE Y, x, y or X, Y, Z. If the measurement is in Y, x, y, it should be converted to X, Y, Z.
- 30) The X, Y, Z values obtained in step 19 for blue LED, step 24 for green LED and step 29 for red LED is tabulated in table 4.

The subscript represents the LED color that was turned on during measurement.

Red LED on (step 29)	Green LED on (step 24)	Blue LED on (step 19)		
X _R	X _G	X _B		
Y _R	Y _G	Y _B		
Z _R	Z _G	Z _B		

Table 4. Tabulated camera measurements

- 31) The maximum value of the set {X_R, Y_R, Z_R, X_G, Y_G, Z_G, X_B, Y_B, Z_B) is determined. Assume that the maximum value is V_M.
- 32) The Scale1 ratio is obtained by the equation below:

Scale Value = $\frac{1000}{V_{M}}$

- 33) All the elements of the set { X_R, Y_R, Z_R, X_G, Y_G, Z_G, X_B, Y_B, Z_B } is multiplied by this Scale1 value. Let the scaled value be the set { X_RR, Y_{RR}, Z_RR, X_{GG}, Y_{GG}, Z_{GG}, X_{BB}, Y_{BB}, Z_B }.
- 34) If $Y_{RR} + Y_{GG} + Y_{BB} > 1000$, then Scale2 ratio is obtained by the equation below:

Scale2 =
$$\frac{1000}{(Y_{RR} + Y_{GG} + Y_{BB})}$$

otherwise

Scale2 = 1

- 35) All the elements of the set { X_{RR}, Y_{RR}, Z_{RR}, X_{GG}, Y_{GG}, Z_{GG}, X_{BB}, Y_{BB}, Z_{BB} } is multiplied by this Scale2 value and converted to hexadecimal. Let the scaled and converter hexadecimal value be the set { X_{RRH}, Y_{RRH}, Z_{RRH}, X_{GGH}, Y_{GGH}, Z_{GGH}, X_{BBH}, Y_{BBH}, Z_{BBH} }.
- 36) These values are stored to the input registers in table 5, prior to calibration data processing.

Table 5. Camera measurements and register storage before calibration data processing

Comoro	Coole and converted have	Input Register to sto	ore
value(step 30)	decimal value(step 35)	Upper 2 bits	Lower 8 bits
X _R	X _{RRH}	CAL_CMXR_HI	CAL_CMXR_LO
Y _R	Y _{RRH}	CAL_CMYR_HI	CAL_CMYR_LO
Z _R	Z _{RRH}	CAL_CMZR_HI	CAL_CMZR_LO
X _G	X _{GGH}	CAL_CMXG_HI	CAL_CMXG_LO
Y _G	Y _{GGH}	CAL_CMYG_HI	CAL_CMYG_LO
Z _G	Z _{GGH}	CAL_CMZG_HI	CAL_CMZG_LO
X _B	X _{BBH}	CAL_CMXB_HI	CAL_CMXB_LO
Y _B	Y _{BBH}	CAL_CMYB_HI	CAL_CMYB_LO
Z _B	Z _{BBH}	CAL_CMZB_HI	CAL_CMZB_LO

- 37) The measured sensor values obtained in step 18, 23 and 28 and the scaled and converted hexadecimal camera values in step 36 are written to the ADJD-J823 registers listed in table 12 of appendix 2. Table 12 consists of input data from table 1, 2, 3, and 5 grouped together.
- 38) Write CTRL2 register with a value of 01H to set RCAL bit 0 to '1'. This will start processing of the calibration data.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL
Value	0	0	0	0	0	0	0	1

Figure 27. CTRL2 format. Address 02H

When RCAL bit 0 goes to '0', the calibration data processing is completed.

Note:

1. This step can only be done once.

2. If the calibration data processing is to be repeated, do step 36 before setting RCAL bit to '1'.

39) Write CONFIG1 register to reset the PWME bit to '0' before saving the data to non-volatile memory.

Bit	7	6	5	4	3	2	1	0
Mnemonic			RSV			AUTOL	PWML	PWME
Value	0	0	0	0	0	0	Note a	0

Figure 28. CONFIG1 format. Address 03H

Note a: Set PWML bit: '0' for PWM active high, '1' for PWM active low .

40) This step is recommended to improve the brightness change response of the ADJD-J823. To do this, the six calibration registers need to be swapped. The brightness change response time will be better if the following registers values are swapped before saving to dedicated EEPROM or external EEPROM.

CALDATA19 swapped with CALDATA21 CALDATA20 swapped with CALDATA24 CALDATA23 swapped with CALDATA25

The swapping of these registers can be accomplished by the use of two temporary registers TEMP1 at address DAH and TEMP2 at address DBH as follows:

Transfer register CALDATA19 (9Dh) to register TEMP1 (DAh). Transfer register CALDATA21 (9Fh) to register TEMP2 (DBh). Transfer register TEMP1 (DAh) to register CALDATA21 (9Fh). Transfer register TEMP2 (DBh) to register CALDATA19 (9Dh). Transfer register CALDATA20 (9Eh) to register TEMP1 (DAh). Transfer register CALDATA20 (9Eh) to register TEMP2 (DBh). Transfer register TEMP1 (DAh) to register TEMP2 (DBh). Transfer register TEMP1 (DAh) to register CALDATA24 (A2h). Transfer register TEMP2 (DBh) to register CALDATA20 (9Eh). Transfer register CALDATA23 (A1h) to register TEMP1 (DAh). Transfer register CALDATA25 (A3h) to register TEMP2 (DBh). Transfer register TEMP1 (DAh) to register CALDATA25 (A3h). Transfer register TEMP1 (DAh) to register CALDATA25 (A3h).

These transfers are done using the I2C interface.

41) The data to be saved consist of 50 bytes of data and the PWML (bit 1) of CONFIG1 register. They must be entered back in normal operating mode to overwrite the default value after power on reset or software reset. These 50 bytes of data consist of offset, frequency, setup and calibration data listed in table 14, 15, 16 and 17.

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	RS	RSV		SAGA	GOFS	GSSR	RCAL
Value	0	0	0	1	0	0	0	0

For system with dedicated EEPROM, write CTRL2 with 10H to set UPL_CAL to '1'.

Figure 29. CTRL2 format. Address 02H

When UPL_CAL bit 4 goes to '0', read the ERROR register. These data are saved to EEPROM if the NACK (bit 5) of ERROR register is '0'.

42) The color gamut provided by the red, green and blue LEDs are given by the three points obtained in step 19, 24 and 29.

Normal Operating Procedure

All the ADJD-J823 system should follow the flow provided in the basic operating procedure. For a system with dedicated EEPROM, the programming is simplified and AUTO LOAD is allowed. Refer to set up for auto load operation, AUTO LOAD operating procedure or stand alone procedure for more information.

Color Set Point setting

The color set point or color point must be selected first. The color point is in the CIE 1931 Yxy color space. The inputs consist of the brightness and the color coordinates. The color coordinates is specified by the CIE_X (CIE_X_HI and CIE_X_LO), and the CIE_Y (CIE_Y_HI and CIE_Y_LO) registers. The value to be entered is the coordinate value multiplied by 1000.

I.e. CIE_X = CIE 1931 x-coordinate * 1000

CIE_Y = CIE 1931 y-coordinate * 1000

Example. The chosen color coordinates is a D65 white point with x = 0.313 and y=0.329.

Enter 313 or 0139H to the CIE_X register. I.e. CIE_X_HI = 01H, CIE_X_LO = 39H. Enter 329 or 0149H to the CIE_Y register. I.e. CIE_Y_HI = 01H, CIE_Y_LO = 49H.

Brightness

The brightness of the system depends on the following:

- a) BRIGHT value
- b) DEVICE_L value

To avoid confusion, the DEVICE_L must be programmed with 03E8H, (or decimal 1000). Thus, the system brightness depends solely on the BRIGHT value. With the BRIGHT value

set at the default maximum 0E79H (or decimal 3705), the system will displayed the brightness at maximum output. This maximum is the system capability limit to produce the brightness at that color coordinates.

The maximum brightness depends on the chosen color coordinates and will change if the color coordinates is changed. For this reason, to correlate actual brightness with BRIGHT register value, the system actual brightness is measured when the BRIGHT value is at maximum or 0E79H and the DEVICE_L fixed to 03E8H at the required color coordinates. Thus, for any arbitrary BRIGHT value, the actual brightness is given by

where MML is the measured brightness at BRIGHT register set to 0E79H (or decimal 3705) and DEVICE_L register set to 03E8H or (decimal 1000), at the required color coordinates.

Response time

The response time of the color controller system can be improved at power on using methods described in application note 5254. Note the registers to be saved before power down are duty registers at address location (24H - 29H), table 1 and backup methodology registers at address location (CAH to E1H and E6H to E7H) for ADJD-J823. User can use this technique in Independent NVPROM mode only.

To have better response time in brightness change, it is recommended that the programmed brightness (i.e. BRIGHT register) value should not changed by more than 10% in less than 300ms.

Basic Operating Procedure

Figure 30 shows the flow chart for basic operating procedure.

Figure 30. Basic operating flowchart

The procedure for basic operating mode is as follows.

1) Do an external power on reset or perform software reset. Software reset is done by writing CTRL1 with 01H to set RSW to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	0	0	0	0	0	1

Figure 31. CTRL1 format. Address 01H

2) Wait for the reset sequence to be completed. The status register (address 22H) can be read to verify that the INIT (bit 0) is set to "0" before proceeding.

Bit	7	6	5	4	3	2	1	0
Mnemonic		RS	SV		RSV	OPENL	NORM	INIT
Value	0	0	0	0	0	0	1	0

Figure 32. STATUS register. Address 22H

After power on reset or software reset, the DUTYR_LO, DUTYR_HI, DUTYG_LO, DUTYG_HI, DUTYB_LO and DUTYB_HI register are '0'. The PWME bit of CONFIG1 register is set to '0'. This should turn off all the red, green and blue LEDs for active high LED driver design.

However, for active low LED driver design, all the red, green and blue LEDs will turn on after power or software reset.

3) Load the saved 51 bytes of data from non volatile memory, starting with CONFIG1 register. These 51 bytes of data have been saved in step 41 of the calibration procedure. For system with dedicated EEPROM, download the 51 bytes of data from non volatile memory by setting DWL_CAL (bit 5) of CTRL1 register high.

Bit	7	6	5	4	3	2	1	0
Mnemonic	RS	5V	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	1	0	0	0	0	0

Figure 33. CTRL1 format. Address 01H

- 4) Decide on the BRIGHT value. Write the BRIGHT_HI register (address 1AH) and BRIGHT_LO register (address 19H).
- 5) Write CIE_X with CIE 1931 x-coordinate * 1000. Write CIE_Y with CIE 1931 y-coordinate * 1000. Write DEVICE_L with 1000. I.e. Write DEVICE_L_LO with E8H and DEVICE_L_HI with 03H.

Table 6 shows the data format.

Table 6. Color set point format

DEVICE_L_HI	Write 3
DEVICE_L_LO	Write 232
CIE_X_HI	Upper two bits of the integer value (x *1000)
CIE_X_LO	Lower 8 bits of the integer value (x * 1000)
CIE_Y_HI	Upper 2 bits of the integer value (y * 1000)
CIE_Y_LO	Lower 8 bits of the integer value (y * 1000)

Note:

1. All numbers in table 6 are decimal.

2. x - CIE 1931 chromaticity coordinate x

3. y - CIE 1931 chromaticity coordinate y

6) After entering the data in DEVICE_L, CIE_X and CIE_Y, write CTRL1 register with 02H to update the selected color point.

Bit	7	6	5	4	3	2	1	0
Mnemonic	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	0	0	0	0	1	0

Figure 34. CTRL1 register. Address 01H

When the UD_CP bit goes '0', the color point data is updated.

7) Enable the PWM generator by setting the PWME (bit 0) of CONFIG1 register high.

Bit	7	6	5	4	3	2	1	0
Mnemonic	RSV					AUTOL	PWML	PWME
Value	0	0	0	0	0	0	Note a	1

Figure 35. CONFIG1 format. Address 03H

Note: a) Set PWML bit: '0' for PWM active high, '1' for PWM active low.

The ADJD-J823 system will display the specified color point.

8) Read the ERROR register (address 23H) to determine if there is any ERROR.

Bit	7	6	5	4	3	2	1	0
Mnemonic	NSSR	RSV	NACK	DIM	BRIGHT	RSV	NLOCK	RANGE
Value	Note a	Х	Х	Х	Х	Х	Note b	Note c

Figure 36. ERROR register. Address 23H

Notes:

- a) If NSSR (bit 7) of ERROR register is '1': NSSR error. Refer to step 7 of calibration procedure to enter the correct value for SENACT register. The calibration procedure must be done again to correct this error.
- b) If NLOCK (bit 1) of ERROR register is '1': No Lock error. The required color set point could not be achieved. A value of '0': indicates the require color point is achieved.
- c) If RANGE (bit 0) is '1': Out of Range error. Required color set point is outside the sensor measurement range. Previous set point is maintained.
- 9) If the application is for multi color points selection, step 4, 5, 6 and 8 can be repeated to select a different color point.
- 10) If the application is for a single color point and there is no error in the previous step, the setup, color point and calibration data can be saved for stand-alone operation. Do the procedure outline in "Set up for stand-alone operation" section.

Set up for stand-alone operation

Figure 37 shows the flowchart to setup the system for stand-alone operation.

Figure 37. Flowchart to set up for auto load or stand-alone operation

This section is applicable for system with dedicated EEPROM designed in.

- 1) The basic operating procedure flow (figure 30) from step 1 to step 8 must be done first.
- 2) Set AUTOL (bit 2) and PWME (bit 0) of CONFIG1 register to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	RSV				AUTOL	PWML	PWME	
Value	0	0	0	0	0	1	Note a	1

Figure 38. CONFIG1 format. Address 03H

Note: a) Set PWML bit: '0' for PWM active high, '1' for PWM active low.

3) Set UPL_ALL (bit 4) of CTRL1 register to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	0	1	0	0	0	0

Figure 39. CTRL1 register. Address 01H

When UPL_ALL bit goes '0', read the ERROR register. The 71 bytes of data consisting of CONFIG1 register, offset, frequency, setup, calibration, brightness and color data are completely uploaded to EEPROM if the NACK (bit 5) of ERROR register is '0'. These 71 bytes of data include the CONFIG1 register and data listed in table 14, 15, 16, 17, 18 and 19.

The next time the system is powered on, the system will automatically display the stored color point. Refer to auto load operating procedure for more information.

Auto load operating procedure

This section is applicable for system with dedicated EEPROM. The flowchart is applicable to system after the set up for stand-alone operation has been done.

Figure 40. Auto load operating procedure flowchart

- 1) Do an external power on reset or software reset. The setup, color set point and calibration data including CONFIG1 register setting will auto load. The stored color point will be displayed.
- 2) To change the color set point, i.e. to display a different color set point, perform step 4, 5, 6 and 8 of the basic operating procedure.
- 3) If the stored color point is to be changed to the displayed color point, set UPL_CP (bit 2) of CTRL1 register to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	0	0	0	1	0	0

Figure 41. CTRL1 register. Address 01H

When UPL_CP bit goes '0', read the ERROR register. The color set point data listed in table 19 are completely uploaded to EEPROM if the NACK (bit 5) of ERROR register is '0'.

The next time the system is turn on, the system will automatically displayed the new stored color point.

Removing the Auto load operation

Figure 42 shows the flowchart to remove auto load operation.

Figure 42. Flowchart to remove auto load operation

This section applies to system with dedicated EEPROM.

1) After external power on reset or software reset, set AUTOL (bit 2) and PWME (bit 0) of CONFIG1 register to '0'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	RSV					AUTOL	PWML	PWME
Value	0	0	0	0	0	0	Note a	0

Figure 43. CONFIG1 format. Address 03H

Note: a) Set PWML bit: '0' for PWM active high, '1' for PWM active low.

2) Set UPL_ALL (bit 4) of CTRL1 register to '1'.

Bit	7	6	5	4	3	2	1	0
Mnemonic	RS	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Value	0	0	0	1	0	0	0	0

Figure 44. CTRL1 register. Address 01H

When UPL_ALL bit goes '0', read the ERROR register. The CONFIG1 register and the other 70 bytes of data are completely uploaded to EEPROM if the NACK (bit 5) of ERROR register is '0'.

The next time the system is turn on, the system will not auto load. The steps outlined in the basic operating procedure must be done to display the color set point.

Appendix 1. Register Name, width and bit format

Register name	Width	Table
CTRL1	8	9
CTRL2	8	9
CONFIG1	8	9
CONFIG2	8	9
STATUS	8	9
ERROR	8	9
DUTYB	12	10
DUTYG	12	10
DUTYR	12	10
SENSOR_ADCZ	10	11
SENSOR_ADCY	10	11
SENSOR_ADCX	10	11
CAL_CMZB	10	12
CAL_CMYB	10	12
CAL_CMXB	10	12
CAL_CMZG	10	12
CAL_CMYG	10	12
CAL_CMXG	10	12
CAL_CMZR	10	12
CAL_CMYR	10	12
CAL_CMXR	10	12

Table 7	Register	name and	width
IUNIC /	. negister	nume unu	windin

Width	Table
10	12
10	12
10	12
10	12
10	12
10	12
10	12
10	12
10	12
10	12
8	13
8	14
8	14
8	14
8	15
16	15
8	16 &18
8	17
12	19
10	19
10	19
10	19
	Width 10 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 8 8 8 8 16 8 12 10 10 112 10 10 10

Refer to table listed in the 'Table' column for more information.

Table 8. Register bit format

			Format				-			
Width	Registe	r name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
10 bits	DECION	REG_LO	R7	R6	R5	R4	R3	R2	R1	R0
TODILS	REG[9:0]	REG_HI							R9	R8
12 hite	REG[11:0]	REG_LO	R7	R6	R5	R4	R3	R2	R1	RO
12 DILS		REG_HI					R11	R10	R9	R8
16 hite		REG_LO	R7	R6	R5	R4	R3	R2	R1	R0
TODILS	REG[10:0]	REG_HI	R15	R14	R13	R12	R11	R10	R9	R8

 Note
 1. REG is any register with bit width greater than 8. Refer to table 7 for register name.

 2. REG_LO is the lower byte and REG_HI is the upper byte.

3. R0 is least significant bit.

Appendix 2. Register list by group

	Register	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	Reset Value Hex
01	CTRL1	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW	00
02	CTRL2	UD_DUTY	R	SV	UPL_CAL	SAGA	GOFS	GSSR	RCAL	00
03	CONFIG1	RSV			AUTOL	PWML	PWME	00		
04	CONFIG2		RSV					OPMD	00	
22	STATUS	RSV			OPENL	NORM	INIT	02		
23	ERROR	NSSR	RSV	NACK	DIM	BRIGHT	RSV	NLOCK	RANGE	00

Table 10. Duty Registers

Address			Reset Value
Hex	Register	Description	Hex
24	DUTYB_LO	Blue LED duty. Lower 8 bits.	00
25	DUTYB_HI	Blue LED duty. Upper 4 bits.	00
26	DUTYG_LO	Green LED duty. Lower 8 bits.	00
27	DUTYG_HI	Green LED duty. Upper 4 bits.	00
28	DUTYR_LO	Red LED duty. Lower 8 bits.	00
29	DUTYR_HI	Red LED duty. Upper 4 bits.	00

Table 11. Sensor ADC output measurement registers

Address Hex	Register	Description	Reset Value Hex
84	SENSOR_ADCZ_LO	Sensor channel Z ADC value. Lower 8 bits.	00
85	SENSOR_ADCZ_HI	Sensor channel Z ADC value. Upper 2 bits.	00
86	SENSOR_ADCY_LO	Sensor channel Y ADC value. Lower 8 bits.	00
87	SENSOR_ADCY_HI	Sensor channel Y ADC value. Upper 2 bits.	00
88	SENSOR_ADCX_LO	Sensor channel X ADC value. Lower 8 bits.	00
89	SENSOR_ADCX_HI	Sensor channel X ADC value. Upper 2 bits.	00

Table 12. Input registers for Calibration data processing

Address Hex	Register	Description	Reset Value Hex
DC	CAL_CMZB_LO	Scaled camera Z value when only blue LED on. Lower 8 bits	00
DD	CAL_CMZB_HI	Scaled camera Z value when only blue LED on. Upper 2 bits	00
DE	CAL_CMYB_LO	Scaled camera Y value when only blue LED on. Lower 8 bits	00
DF	CAL_CMYB_HI	Scaled camera Y value when only blue LED on. Upper 2 bits	00
EO	CAL_CMXB_LO	Scaled camera X value when only blue LED on. Lower 8 bits	00
E1	CAL_CMXB_HI	Scaled camera X value when only blue LED on. Upper 2 bits	00
E2	CAL_CMZG_LO	Scaled camera Z value when only green LED on. Lower 8 bits	00
E3	CAL_CMZG_HI	Scaled camera Z value when only green LED on. Upper 2 bits	00
E4	CAL_CMYG_LO	Scaled camera Y value when only green LED on. Lower 8 bits	00
E5	CAL_CMYG_HI	Scaled camera Y value when only green LED on. Upper 2 bits	00
E6	CAL_CMXG_LO	Scaled camera X value when only green LED on. Lower 8 bits	00
E7	CAL_CMXG_HI	Scaled camera X value when only green LED on. Upper 2 bits	00
E8	CAL_CMZR_LO	Scaled camera Z value when only red LED on. Lower 8 bits	00
E9	CAL_CMZR_HI	Scaled camera Z value when only red LED on. Upper 2 bits	00
EA	CAL_CMYR_LO	Scaled camera Y value when only red LED on. Lower 8 bits	00
EB	CAL_CMYR_HI	Scaled camera Y value when only red LED on. Upper 2 bits	00
EC	CAL_CMXR_LO	Scaled camera X value when only red LED on. Lower 8 bits	00
ED	CAL_CMXR_HI	Scaled camera X value when only red LED on. Upper 2 bits	00
EE	CAL_SMZB_LO	SENSOR_ADCZ_LO value when only blue LED on. Lower 8 bits	00
EF	CAL_SMZB_HI	SENSOR_ADCZ_HI value when only blue LED on. Upper 2 bits	00
FO	CAL_SMYB_LO	SENSOR_ADCY_LO value when only blue LED on. Lower 8 bits	00
F1	CAL_SMYB_HI	SENSOR_ADCY_HI value when only blue LED on. Upper 2 bits	00
F2	CAL_SMXB_LO	SENSOR_ADCX_LO value when only blue LED on. Lower 8 bits	00
F3	CAL_SMXB_HI	SENSOR_ADCX_HI value when only blue LED on. Upper 2 bits	00
F4	CAL_SMZG_LO	SENSOR_ADCZ_LO value when only green LED on. Lower 8 bits	00
F5	CAL_SMZG_HI	SENSOR_ADCZ_HI value when only green LED on. Upper 2 bits	00
F6	CAL_SMYG_LO	SENSOR_ADCY_LO value when only green LED on. Lower 8 bits	00
F7	CAL_SMYG_HI	SENSOR_ADCY_HI value when only green LED on. Upper 2 bits	00
F8	CAL_SMXG_LO	SENSOR_ADCX_LO value when only green LED on. Lower 8 bits	00
F9	CAL_SMXG_HI	SENSOR_ADCX_HI value when only green LED on. Upper 2 bits	00
FA	CAL_SMZR_LO	SENSOR_ADCZ_LO value when only red LED on. Lower 8 bits	00
FB	CAL_SMZR_HI	SENSOR_ADCZ_HI value when only red LED on. Upper 2 bits	00
FC	CAL_SMYR_LO	SENSOR_ADCY_LO value when only red LED on. Lower 8 bits	00
FD	CAL_SMYR_HI	SENSOR_ADCY_HI value when only red LED on. Upper 2 bits	00
FE	CAL_SMXR_LO	SENSOR_ADCX_LO value when only red LED on. Lower 8 bits	00
FF	CAL_SMXR_HI	SENSOR_ADCX_HI value when only red LED on. Upper 2 bits	00

Table 13. Sensor acquisition constant

Address			Reset
Hex	Register	Description	Value Hex
A9	SENACT	Sensor acquisition constant	00

Table 14. Offset registers

Address			Reset
Hex	Register	Description	Value Hex
81	OFFSET_Z	OFFSET Z	3C
82	OFFSET_Y	OFFSET Y	3C
83	OFFSET_X	OFFSET X	3C

Table 15. Frequency registers

Address			Reset
Hex	Register	Description	Value Hex
05	PWMFREQ	Pulse Width Modulation Frequency	00
06	SAMPFREQ_LO	Sensor Sampling Frequency Low Byte	30
07	SAMPFREQ_HI	Sensor Sampling Frequency High Byte	75

Table 16. Setup registers

Address			Reset
Hex	Register	Description	Value Hex
08	SETUP0	Setup Registers	2D
09	SETUP1		07
0A	SETUP2		07
OB	SETUP3		07
0C	SETUP4		1F
0D	SETUP5		1F
OE	SETUP6		1F
0F	SETUP7		07
10	SETUP8		07
11	SETUP9		07
1B	SETUP10		7F
1F	SETUP11		3C
20	SETUP12		OF

Table 17. Calibration registers

			Reset
Address Hex	Reaister	Description	Value Hex
8A	CALDATAO	Calibration data 0	FF
8B	CALDATA1	Calibration data 1	0C
8C	CALDATA2	Calibration data 2	32
8D	CALDATA3	Calibration data 3	08
8E	CALDATA4	Calibration data 4	DD
8F	CALDATA5	Calibration data 5	81
90	CALDATA6	Calibration data 6	79
91	CALDATA7	Calibration data 7	02
92	CALDATA8	Calibration data 8	7B
93	CALDATA9	Calibration data 9	1E
94	CALDATA10	Calibration data 10	0F
95	CALDATA11	Calibration data 11	8A
96	CALDATA12	Calibration data 12	24
97	CALDATA13	Calibration data 13	83
98	CALDATA14	Calibration data 14	DB
99	CALDATA15	Calibration data 15	83
9A	CALDATA16	Calibration data 16	39
9B	CALDATA17	Calibration data 17	18
9C	CALDATA18	Calibration data 18	7F
9D	CALDATA19	Calibration data 19	8F
9E	CALDATA20	Calibration data 20	88
9F	CALDATA21	Calibration data 21	A8
A0	CALDATA22	Calibration data 22	6E
A1	CALDATA23	Calibration data 23	8B
A2	CALDATA24	Calibration data 24	85
A3	CALDATA25	Calibration data 25	8E
A4	CALDATA26	Calibration data 26	62
A5	CALDATA27	Calibration data 27	1C
A6	CALDATA28	Calibration data 28	03
A7	CALDATA29	Calibration data 29	FD
A8	CALDATA30	Calibration data 30	OF

Table 18. Setup registers

Address			Reset Value
Hex	Register	Description	Hex
00	SETUP13	Setup registers	58
12	SETUP14		1E
13	SETUP15		04
14	SETUP16		64
15	SETUP17		00
16	SETUP18		00
17	SETUP19		50
18	SETUP20		04
E2	SETUP21		30
E3	SETUP22		08
E4	SETUP23		04
E5	SETUP24		04

Table 19. Bright and color input registers

Address Hex	Register	Description	Reset Value Hex
19	BRIGHT_LO	Brightness Control Low Byte	79
1A	BRIGHT_HI	Brightness Control High Byte	OE
E8	CIE_Y_LO	CIE 1931 y-coordinate. Lower 8 bits	00
E9	CIE_Y_HI	CIE 1931 y-coordinate. Upper 2 bits	00
EA	CIE_X_LO	CIE 1931 x-coordinate. Lower 8 bits	00
EB	CIE_X_HI	CIE 1931 x-coordinate. Upper 2 bits	00
EC	DEVICE_L_LO	Device luminance. Lower 8 bits	00
ED	DEVICE_L_HI	Device luminance. Upper 2 bits	00

Appendix 3. Register Description

CTRL1: Control 1 Register (01H)

	7	6	5	4	3	2	1	0
Mnemonic	R	SV	DWL_CAL	UPL_ALL	DWL_ALL	UPL_CP	UD_CP	RSW
Reset Value	0	0	0	0	0	0	0	0

Figure A01: Control 1 Register Format

Table 20: Control 1 Register Bit Descriptions

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is 0.
DWL_CAL	R/W	Download calibration mode data. Set this bit high to download from EE- PROM. The 50 bytes consisting of offsets, frequency, setup and calibration data (table 14, 15, 16 and 17) is loaded to the device. The PWML (bit 1) is also loaded to CONFIG1 register. Other CONFIG1 bits are reset to 0. The device resets this bit low once all data are downloaded completely. This operation is available only in close loop mode.
UPL_ALL	R/W	Upload all data. Set this bit high to upload to EEPROM. The data uploaded are CONFIG1 register and 70 bytes consisting of offset, frequency, setup, calibration, brightness and color data listed in table 14, 15, 16, 17, 18 & 19. The device resets this bit low once all registers are uploaded to EEPROM. This operation is available only in close loop mode.
DWL_ALL	R/W	Download all data. Set this bit high to download from EEPROM. The CON- FIG1 register and 70 bytes consisting of offset, frequency, setup, calibration, brightness and color input data (table 14 to 19) is downloaded. The device resets this bit low once all data are completely downloaded to the device. This operation is available only in close loop mode.
UPL_CP	R/W	Upload color set point. Set this bit high to upload the current displayed color point data to EEPROM. These 8 bytes of data consist of brightness and color input data listed in table 19. The device resets this bit low once data is completely uploaded to the EEPROM. This is useful when the device is already set to auto load. Refer to AUTO LOAD operating procedure. This operation is available only in normal operation mode.
UD_CP	R/W	Update color set point. Set this bit high to update color set point in the device. This operation will transfer user color set point data to the device color set point and displayed the color. Color set point data includes color coordinates and brightness data listed in table 19. The device resets this bit low once the color point data is updated.
RSW	R/W	Reset Software. Set this bit high to perform soft reset. The device clears this bit low during reset. INIT (bit 0) of STATUS register will be cleared to low once reset is completed.

CTRL2: Control 2 Register (02H)

Bit	7	6	5	4	3	2	1	0
Mnemonic	UD_DUTY	RSV		UPL_CAL	SAGA	GOFS	GSSR	RCAL
Reset Value	0	0	0	0	0	0	0	0

Figure A02: Control 2 Register Format

Table 21: Control 2 Register Bit Descriptions

Mnemonic	Read or Write	Description
UD_DUTY	R/W	Update duty. Set high to set the PWMR, PWMG and PWMB pulse width to the corresponding specified duty values in RED LED duty, Green LED duty and Blue LED duty values. PWME (bit 0) of CONFIG1 register must be set to high for this update. The device will reset this bit low once the duty values are updated. This operation is only available in open loop mode.
RSV	N/A	Reserved. Value is 0.
UPL_CAL	R/W	Upload calibration mode data. Set high to upload 50 bytes consisting of offset, frequency, setup and calibration data (table 14, 15, 16, and 17) to EE-PROM. Only PWML (bit 1) of CONFIG1 register is uploaded. The device resets this bit low once data are completely uploaded. This operation is available only in open loop mode.
SAGA	R/W	Sensor Auto Gain Adjustment. Set high to perform auto-gain adjustment to optimize the sensor acquisition. PWME (bit 0) of CONFIG1 register must be set to high for this operation. Also SENACT register must be defined properly before running SAGA. The device resets this bit low once optimum sensor adjustment is completed. This operation is only available in open loop mode.
GOFS	R/W	Get Offsets. Set this bit high to acquire the offset values from each channel. The device reset this bit low once offset values are acquired. Offset values are stored in OFFSET_X, OFFSET_Y and OFFSET_Z registers respectively. This operation is available only in open loop mode.
GSSR	R/W	Get sensor readings. Set this bit high to acquire sensor readings. The device reset this bit low once sensor acquisition is completed for all channels. Sensor values are stored at SENSOR_ADCX, SENSOR_ADCY and SENSOR_ADCZ registers respectively. This operation is available only in open loop mode.
RCAL	R/W	Run Calibration. Set this bit high to compute calibration data. The device resets this bit low once computation is completed. This operation is available only in open loop mode.

CONFIG1: Configuration 1 Register (03H)

	7	6	5	4	3	2	1	0
Mnemonic	RSV						PWML	PWME
Reset Value	0	0	0	0	0	0	0	0

Figure A03: Configuration 1 Register Format

Table 22: Configuration 1 Register Bit Descriptions

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is 0.
AUTOL	R/W	Self Download Enable. When "1", device will download all registers from EEPROM upon power up or software reset. Since the default value is "0", this bit must be uploaded to EEPROM as high for self download operation. If PWME (bit 0) of CONFIG1 register is stored as high in EEPROM, system will try to achieve color point downloaded from EEPROM. When "0", device will not download data from EEPROM.
PWML	R/W	Pulse Width Modulation Level select. When "1", PWM output is active low. When "0", PWM output is active high.
PWME	R/W	Pulse Width Modulation Enable. When "1", PWM generator is enabled and LEDs can be turned ON. When "0", PWM generator is disabled and LEDs can be turned off.

CONFIG2: Configuration 2 Register (04H)

	7	6	5	4	3	2	1	0	
Mnemonic	RSV								
Reset Value	0 0 0 0 0 0 0								

Figure A04: Configuration 2 Register Format

Table 23: Configuration 2 Register Bit Descriptions

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is 0.
OPMD	R/W	Software Operation Mode. When "1", device is configured to operate in open loop mode. When "0", device is configured to operate in normal mode with sensor feedback.

STATUS: STATUS Register (22H)

	7	6	5	4	3	2	1	0
Mnemonic			RSV	OPENL	NORM	INIT		
Reset Value	0 0 0 0 0					0	1	0

Figure A05. Configuration 2 Register Format

Table 24: Configuration 2 Register Bit Descriptions

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is 0.
OPENL	R	Open Loop Mode Flag. "1" indicates device is in open loop mode and "0" indicates device is not in open loop mode.
NORM	R	Normal Loop Mode Flag. "1" indicates device is in normal loop mode and "0" indicates device is not in normal loop mode.
INIT	R	Initialization Mode Flag. "1" indicates device is performing initialization. "0" indicates initialization is completed.

ERROR: ERROR Register (23H)

	7	6	5	4	3	2	1	0
Mnemonic	NSSR	RSV	NACK	DIM	BRIGHT	RSV	NLOCK	RANGE
Reset Value	0	0	0	0	0	0	0	0

Figure A06. ERROR Register Format

Table 25. ERROR Register Bit Descriptions

Mnemonic	Read or Write	Description
NSSR	R	Invalid SENACT value."1" indicates the device failed to complete sensor acquisition. Review the PWMFREQ, SAMPFREQ and SENACT register values and run calibration procedure again."0" indicates the device is able to com- plete sensor acquisition.
NACK	R	No Acknowledge From EEPROM Flag. "1" indicates that no acknowledge signal received from EEPROM or the I2C communication with EEPROM is not successful."0" indicates that acknowledge signal from EEPROM received and thus I2C communication with EEPROM is successful.
DIM	R	Light Sources Dim Flag. "1" indicates that light source is too dim. Review your sensor placement, filter or LED driver peak current design. "0" indicates light source is not dim.
BRIGHT	R	Light Sources Bright Flag. "1" indicates that light source is too bright. Review you sensor placement, filter and LED driver peak current design."0" indicates light source is not bright.
RSV	N/A	Reserved. Ignore this bit.
NLOCK	R	No Lock Flag. When '1', the required color set point cannot be achieved. When '0', the required color set point is achieved.
RANGE	R	Out of Range Flag. '1' indicates required color set point is lying outside the sensor measurement range and previous valid color set point is maintained. '0' indicates required color set point is lying within sensor measurement range.

PWMFREQ: Pulse Width Modulation Frequency Register (05H)

	7	6	5	4	3	2	1	0
Mnemonic				PWMFF	REQ[7:0]			
Reset Value	0	0	0	0	0	0	0	0

Figure A07: Pulse Width Modulation Frequency Register Format

Table 26: Pulse Width Modulation Frequency Register Bit Description

Mnemonic	Read or Write	Description
PWM- FREQ[7:0]	R/W	PWM Frequency setting
		PWM Frequency = <u>Clock Frequency</u> (PWMFREQ + 1) x 4096
		Default nominal PWM frequency is 6.35KHz with clock frequency of 26MHz.

SAMPFREQ: Sensor Sampling Frequency Register (06H~07H)

SAMPFREQ_LO: Sensor Sampling Frequency Register (06H)

	7	6	5	4	3	2	1	0
Mnemonic				SAMPFI	REQ[7:0]			
Reset Value	0	0	1	1	0	0	0	0

Figure A08: Sensor Sampling Frequency Low Byte Register Format

SAMPFREQ_HI: Sensor Sampling Frequency Register (07H)

	7	6	5	4	3	2	1	0
Mnemonic		SAMPFREQ[15:8]						
Reset Value	0	1	1	1	0	1	0	1

Figure A09: Sensor Sampling Frequency High Byte Register Format

Table 27: Sensor Sampling Frequency Register Bit Description

Mnemonic	Read or Write	Description
SAMP- FREQ[15:0]	R/W	Sensor Sampling Frequency settingThe selected sampling frequency must ensure that the PWM frequency divided by the sampling frequency is at least four. i.e. The PWM frequency must be at least four times the sampling frequency. Sampling Frequency = <u>Clock Frequency</u> SAMPFREQ x 8
		Default nominal sampling frequency is 108 Hz with clock frequency of 26MHz.

SENACT: Sensor Acquisition Constant Register (A9H)

	7	6	5	4	3	2	1	0
Mnemonic	SENACT[7:0]							
Reset Value	0	0	0	0	0	0	0	0

Figure A10: SENACT: Sensor Acquisition Constant Register Format

Table 28. SENACT Register Bit Description

Mnemonic	Read or Write	Description
SEN- ACT[7:0]	R/W	Sensor acquisition constant. Value is given by the equation:
		SENACT = $1/3 * \left\{ \frac{\text{SAMPFREQ}}{512(\text{PWMFREQ} + 1)} - 1 \right\} - 1$
		Rounded down to nearest integer.
		If SENACT is less than 0, the PWM frequency and the sampling frequency must be changed so that the PWM frequency is at least four times the sampling frequency.
		SENACT = 9, if the calculated value is greater than 9.
		If PWMFREQ = 0, SAMPFREQ = 7530H (or decimal 30000),
		= 18.1979
		= 9

BRIGHT: Brightness Control Register (19H ~ 1AH)

BRIGHT_LO: Brightness Control Low Byte Register (19H).

	7	6	5	4	3	2	1	0
Mnemonic		BRIGHT_LO[7:0]						
Reset Value	0	1	1	1	1	0	0	1

Figure A11. BRIGHT_LO register format

BRIGHT_HI: Brightness Control High Byte Register (1AH).

	7	6	5	4	3	2	1	0
Mnemonic	RSV				BRIGHT_HI[11:8]			
Reset Value	0	0	0	0	1	1	1	0

Figure A12. BRIGHT_HI registera format

Table 29. BRIGHT Register Bit Description

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is '0'.
BRIGHT [11:0]	R/W	Brightness Control Register. The device will change the light source brightness by limiting the stabilized maximum PWM duty factor to be less than the value of BRIGHT. The default maximum BRIGHT value is 0E79H or decimal 3705. Do not exceed this maximum value. Brightness is scaled with respect to the ratio of BRIGHT/0E79H E.g. To scale the brightness by 50%, a value 073DH or decimal 1853 is written to BRIGHT register.

CIE_Y: CIE 1931 y-coordinate Register (E8H~E9H)

Bit	7	6	5	4	3	2	1	0
Mnemonic		CIE_Y[7:0]						
Reset Value	0	0	0	0	0	0	0	0

CIE_Y_LO: CIE 1931 y-coordinate Low Byte Register (E8H).

Figure A13. CIE 1931 y-coordinate Low Byte Register format

CIE_Y_HI: CIE 1931 y-coordinate High Byte Rregister (E9H).

Bit	7	6	5	4	3	2	1	0
Mnemonic	RSV					CIE_`	/[9:8]	
Reset Value	0	0	0	0	0	0	0	0

Figure A14. CIE 1931 y-coordinate High Byte Register Format

Table 30. CIE_Y Register bit description

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is '0'.
CIE_Y	R/W	CIE 1931 y-coordinate register.
[9:0]		Value
		CIE 1931 chromaticity y-coordinate * 1000

CIE_X: CIE 1931 x-coordinate Register (EAH~EBH)

CIE_X_LO: CIE 1931 x-coordinate Low Byte Register (EAH).

Bit	7	6	5	4	3	2	1	0
Mnemonic	CIE_X[7:0]							
Reset Value	0	0	0	0	0	0	0	0

Figure A15. CIE 1931 x-coordinate Low Byte Register Format

CIE_X_HI: CIE 1931 x-coordinate High Byte Register (EBH).

Bit	7	6	5	4	3	2	1	0
Mnemonic	RSV					CIE_X[9:8]		
Reset Value	0	0	0	0	0	0	0	0

Figure A16. CIE 1931 x-coordinate High Byte Register Format

Table 31. CIE_X register bit description

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is '0'.
CIE_X[9:0]	R/W	CIE 1931 x-coordinate register. Value CIE 1931 chromaticity x-coordinate * 1000

DEVICE_L: Device Luminance Register (ECH~EDH)

Bit	7	6	5	4	3	2	1	0
Mnemonic	DEVICE_L[7:0]							
Reset Value	0	0	0	0	0	0	0	0

DEVICE_L_LO: Device Luminance Low Byte Register (ECH).

Figure A17. Device Luminance Low Byte Register Format

DEVICE_L_HI: Device Luminance High Byte Register (EDH	H).
---	-----

Bit	7	6	5	4	3	2	1	0
Mnemonic	RSV					DEVICE	_L[9:8]	
Reset Value	0	0 0 0 0 0 0				0	0	

Figure A18. Device Luminance High Byte Register Format

Table 32. DEVICE_L Register Bit Description

Mnemonic	Read or Write	Description
RSV	N/A	Reserved. Value is '0'.
DEVICE_L[9:0]	R/W	Device luminance register.
		Device luminance value is set to 03E8H.

Appendix 4. EEPROM locations

EPROM	REGISTER	REGISTER					
LOCATION	NAME	ADDR					
01	SETUP13	00					
02	CONFIG1	03					
03	PWMFREQ	05					
04	SAMPFREQ_LO	06					
05	SAMPFREQ_HI	07					
06	SETUPO	08					
07	SETUP1	09					
08	SETUP2	0A					
09	SETUP3	OB					
0A	SETUP4	0C					
OB	SETUP5	0D					
0C	SETUP6	OE					
0D	SETUP7	0F					
0E	SETUP8	10					
0F	SETUP9	11					
10	SETUP14	12					
11	SETUP15	13					
12	SETUP16	14					
13	SETUP17	15					
14	SETUP18	16					
15	SETUP19	17					
16	SETUP20	18					
17	BRIGHT_LO	19					
18	BRIGHT_HI	1A					
19	CIE_Y_LO	E8					
1A	CIE_Y_HI	E9					
1B	CIE_X_LO	EA					
1C	CIE_X_HI	EB					
1D	DEVICE_L_LO	EC					
1E	DEVICE_L_HI	ED					
1F	SETUP21	E2					
20	SETUP22	E3					
21	SETUP23	E4					
22	SETUP24	E5					
23	OFFSET_Z	81					
24	OFFSET_Y	82					

Table 33. EEPRO	OM locations applicable to UPL	_ALL or DWL_	ALL

REGISTER				
NAME	ADDR			
OFFSET_X	83			
CALDATA0	8A			
CALDATA1	8B			
CALDATA2	8C			
CALDATA3	8D			
CALDATA4	8E			
CALDATA5	8F			
CALDATA6	90			
CALDATA7	91			
CALDATA8	92			
CALDATA9	93			
CALDATA10	94			
CALDATA11	95			
CALDATA12	96			
CALDATA13	97			
CALDATA14	98			
CALDATA15	99			
CALDATA16	9A			
CALDATA17	9B			
CALDATA18	9C			
CALDATA19	9D			
CALDATA20	9E			
CALDATA21	9F			
CALDATA22	A0			
CALDATA23	A1			
CALDATA24	A2			
CALDATA25	A3			
CALDATA26	A4			
CALDATA27	A5			
CALDATA28	A6			
CALDATA29	A7			
CALDATA30	A8			
SETUP10	1B			
SETUP11	1F			
SETUP12	20			
NOT USED				
	REGISTERNAMEOFFSET_XCALDATA0CALDATA1CALDATA2CALDATA3CALDATA4CALDATA5CALDATA6CALDATA7CALDATA7CALDATA7CALDATA8CALDATA9CALDATA10CALDATA11CALDATA12CALDATA15CALDATA14CALDATA16CALDATA15CALDATA16CALDATA17CALDATA18CALDATA19CALDATA19CALDATA18CALDATA20CALDATA21CALDATA23CALDATA23CALDATA24CALDATA25CALDATA27CALDATA28CALDATA30SETUP10SETUP11SETUP11SETUP12NOT USED			

EPROM	REGISTER		
LOCATION	NAME	ADDR	
02	CONFIG1	03	
03	PWMFREQ	05	
04	SAMPFREQ_LO	06	
05	SAMPFREQ_HI	07	
06	SETUPO	08	
07	SETUP1	09	
08	SETUP2	0A	
09	SETUP3	OB	
0A	SETUP4	0C	
OB	SETUP5	0D	
0C	SETUP6	OE	
0D	SETUP7	OF	
OE	SETUP8	10	
0F	SETUP9	11	
23	OFFSET_Z	81	
24	OFFSET_Y	82	
25	OFFSET_X	83	
26	CALDATA0	8A	
27	CALDATA1	8B	
28	CALDATA2	8C	
29	CALDATA3	8D	
2A	CALDATA4	8E	
2B	CALDATA5	8F	
2C	CALDATA6	90	
2D	CALDATA7	91	
2E	CALDATA8	92	

Table 34. EEPROM locations used in DWL_CAL or UPL_CAL

EPROM LOCATION	REGISTER	REGISTER		
	NAME	ADDR		
2F	CALDATA9	93		
30	CALDATA10	94		
31	CALDATA11	95		
32	CALDATA12	96		
33	CALDATA13	97		
34	CALDATA14	98		
35	CALDATA15	99		
36	CALDATA16	9A		
37	CALDATA17	9B		
38	CALDATA18	9C		
39	CALDATA19	9D		
3A	CALDATA20	9E		
3B	CALDATA21	9F		
3C	CALDATA22	A0		
3D	CALDATA23	A1		
3E	CALDATA24	A2		
3F	CALDATA25	A3		
40	CALDATA26	A4		
41	CALDATA27	A5		
42	CALDATA28	A6		
43	CALDATA29	A7		
44	CALDATA30	A8		
45	SETUP10	1B		
46	SETUP11	1F		
47	SETUP12	20		

Note: For CONFIG1 register, only PWML bit is uploaded or downloaded. Other bits are reset to 0.

Table 35. EEPROM locations used in UPL_CP

EPROM	REGISTER		
LOCATION	NAME	ADDR	
17	BRIGHT_LO	19	
18	BRIGHT_HI	1A	
19	CIE_Y_LO	E8	
1A	CIE_Y_HI	E9	
1B	CIE_X_LO	EA	
1C	CIE_X_HI	EB	
1D	DEVICE_L_LO	EC	
1E	DEVICE_L_HI	ED	

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes AV01-0131EN AV02-0619EN - July 17, 2008

