

Firmware - RGB Color Mixing Firmware for
EZ-Color™

April 9, 2008 Document No. 001-16035 Rev. *B 1

AN16035
Author: Ben Kropf

Associated Project: Yes
Associated Part Family: CY8CLED16, CY8CLED08, CY8CLED04

GET FREE SAMPLES HERE
Software Version: PSoC Designer™ 4.4

Associated Application Notes: AN14406, AN15733, AN33640
PSoC Application Notes Index

Application Note Abstract
The Cypress EZ-Color™ device is well suited for High Brightness LED (HBLED) color mixing applications. However, the
firmware in these applications is quite complex. This application note details firmware that implements an RGB LED color
mixing solution in the EZ-Color HBLED controller.

Introduction
Using EZ-Color™ to intelligently drive and control high
powered LEDs leads to useful applications and designs. The
firmware in these applications is extensive and complex.
This application note describes the firmware in an
application that features dynamically programmable color
outputs, a high level of integration, and minimal use of
system Flash. The firmware implementation of a RGB LED
color mixing application is also described. A considerable
amount of external hardware and thermal design must
accompany the firmware. Cypress has produced other
application notes that address both of these aspects of
HBLED color mixing designs.

From a high level perspective, this firmware inputs values in
CIE 1931 chromaticity coordinate form, and converts the
coordinates into the appropriate dimming values for each of
the three LED channels. A dimming value is the percentage
of maximum luminous flux to which an LED must be
dimmed. If an LED has its current quickly switched on and
off in an intelligent fashion, the LED has its flux output
controlled.

In other words, one chromaticity coordinate is input into the
firmware. The firmware combines this coordinate with its
preprogrammed knowledge of the LED characteristics in the
system, along with LED junction temperature
measurements. It then completes the necessary transfer
function that correctly converts the chromaticity coordinate
into a dimming value for each LED. This process enables
their light outputs to mix together to create the color of the
chromaticity coordinate input into the system.

Accompanying Hardware and
Software
The firmware described in this application note is included
with the CY3261A-RGB demonstration board kit available in
the Cypress Online Store. This kit is specifically developed
for the hardware circuitry that is exhibited on the board. The
kit also includes a PC software application that controls the
color output produced by the board.

High Level Firmware
This firmware repeatedly runs through a loop that performs
four tasks (refer to Figure 1 on page 2). The chart in this
figure represents the procedural execution of the main()
loop in the associated project. The sections of code shown
in Figure 1 are apparent in main().

The two most complex and important tasks are Color Mix
and Temperature Compensation. These tasks also take
more time to execute. Therefore, the firmware is set up to
alternate the task executed during each loop. The other two
primary tasks in the loop are much simpler. The Loop Timer
task delays program execution so that the time taken to
execute the entire main loop is approximately 10 ms. The
Loop Timer task keeps the entire program synchronized and
orderly. The Drive LEDs with Dimming Values task is
responsible for updating the LED driver hardware with the
correct values to dim the LEDs.

[+] Feedback

http://www.cypress.com/samplerequest
http://www.cypress.com/design/AN14406
http://www.cypress.com/design/AN15733
http://www.cypress.com/design/AN33640
http://www.cypress.com/design/appnoteindex
http://www.cypress.com/design/DK10119
http://www.onfulfillment.com/cypressstore/Home.aspx
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_1

AN16035

Although it is not a procedural task, this firmware acts as an
endpoint on an I2C™ network. The firmware receives
commands to display mixed colors through this
communication protocol. I2C communication with the master
device is interrupt driven. Therefore, the main program
execution is not affected. Whenever the I2C master sends
data to this microcontroller, the data is placed in a data
structure held in RAM. When the tasks in the main loop,
such as Color Mix, are executed, they retrieve and use
values from this data structure. This creates a system where
the program in the main loop constantly accesses and uses
values from RAM, which is updated periodically in the
background by the I2C network master.

The Initialization task is not part of the repetitive main loop.
Instead, it occurs once after boot up. The Initialization task is
responsible for applying all initialization settings that enable
the rest of the firmware to function correctly.

Figure 1. High Level Flow Chart of Firmware Execution

Power On

Initialization

Loop Timer

Color Mix

Temperature
Compensation

Turn LEDs Off
Drive LEDs

with Dimming
Values

Even Loop?

Direct
Control
Mode?

Board On?

Yes

No

Yes

No

Yes

No

~10ms Loop
Time

I2C
Interrupt

I2C Data
Structure

Color Mixing Inputs
Before exploring the Color Mix or Temperature
Compensation tasks, you must know more about the inputs
and outputs of the system.

This firmware uses the CIE 1931 color space to input color
requests to be serviced. Any particular color in the CIE 1931
color space is represented with three values, which form a
vector (x, y, Y). The x and y values represent the color hue
and saturation. This application note refers to the x and y
values together as the (x, y) coordinate. Plotting the (x, y)
coordinate on the chart in Figure 2 obtains a particular
shade of color. The colored area represents all visible colors
of light, and the white area represents colors that are not
visible to the human eye. For example, an (x, y) coordinate
of (0.7, 0.7) is not in the colored area and does not
represent any visible color.

The third value of the (x, y, Y) vector specifies the luminous
flux, in lumens (lm). While the (x, y) coordinate is
dimensionless, the Y value can have units of lumens (lm), or
it is expressed as a percentage to signify a relative flux. The
Y value cannot be seen in the graph of Figure 2, but it is
visualized as a vector normal to the page with a magnitude
of Y at some (x, y) coordinate. This (x, y, Y) vector
completely describes a light source by denoting its color and
its total flux. The firmware must have inputs in (x, y, Y)
vector form. Any set of one or more LEDs can have an
(x, y, Y) vector that specifies its average color and total flux
output at some rated current and junction temperature (for
example, TJ = 25°C and IF = 350 mA).

This firmware receives color requests in the form of three
values. In this particular implementation, the (x, y)
coordinate takes the form of two 16-bit words, where a value
of 10,000 would correspond to an x or y value of 1.0. The Y
value is input as an unsigned byte that specifies the number
of total lumens the mixed color must have. In main.c of the
example project, take note of the wCurrentX, wCurrentY,
and bFlux variables in the sLED_Data data structure. The
I2C master is free to update these three values at any time.
The Color Mix task can then use the values to determine the
correct dimming values for the three LEDs that create the
required (x, y, Y) color. This process is shown in Figure 2.

Figure 2. CIE 1931 Color Space Graph

April 9, 2008 Document No. 001-16035 Rev. *B 2

[+] Feedback

http://upload.wikimedia.org/wikipedia/commons/b/b0/CIExy1931.png�
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_2

AN16035

April 9, 2008 Document No. 001-16035 Rev. *B 3

Color Mixing Outputs In Equation 1, Ymax is the lumens an LED would have if it
had a constant rated current flowing through it. The
SignalDensity term is called the “dimming value.” It is a
value from 0.0 to 1.0 (that is, a percentage), which is used to
linearly dim an LED down from its maximum flux. The PrISM
hardware available in EZ-Color has a selectable bit
resolution. This application’s PrISM hardware modules each
have a resolution of 8 bits, and so they must have an 8-bit
input value that determines what their signal density output
is. Therefore, the previous equation is rewritten as seen in
Equation 2.

The challenge in developing this system lies in controlling
three LEDs (with fixed (x, y) coordinates and rated lumens).
The LEDs must be dimmed correctly to specific intensities,
so that their individual colors can mix to create a requested
color.

In this application, the hardware technology modules that
control the three LEDs are precise illumination signal
modulators (PrISMs). These PrISM modules are
implemented in PSoC Designer with SSDM (stochastic
signal density modulation) User Modules. The theory behind
these modules is that the greater the signal density they
have, the greater the flux of the LED that is being driven with
it, and vice versa. Therefore, there is a linear relationship
between an LED’s flux and the density of the signal that is
driving it. Each LED has a maximum lumens output when it
is driven with 100% signal density. The firmware must use
this important maximum lumens output parameter. For
example, an LED may be specified to have 44 lm of light
output when driven with 350 mA of current. If the dimming
signal density is 50%, expect 22 lm of light out of that LED.
The following equation shows this relationship.

12max −
= Nout

nYY (2)

In Equation 2, N is the resolution of the PrISM hardware,
and n is an N-bit value. These equations only determine the
lumen outputs of the LEDs; the respective (x, y) coordinates
of each LED stays relatively fixed. Figure 3 shows the inputs
and outputs of this firmware. Everything shown in this figure
is internal to the EZ-Color except for the actual LEDs. The
color mixer block is a mathematical function executed by the
EZ-Color’s CPU, and the PrISM modules are internal
hardware in the EZ-Color device. itySignalDensYYout ×= max (1)

Figure 3. Firmware Inputs and Outputs

Dynamic Color Mixing
Figure 4. Achievable Color Gamut Triangle The final challenge for the firmware is converting the CIE

1931 color coordinates into three dimming values for the
respective red, green, and blue LED-driving channels. There
are several methods to carry out this process. This firmware
is one approach to implement the conversion.

The three dimming values for each mixed color are not
stored in a look up table in the Flash memory. This is
referred to as the “static method.” The process shown in
Figure 3 is referred to as the “dynamic method.” This
method has several advantages that are not addressed by
the static method.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_3

AN16035

First, the dynamic method provides a dynamic range of color
inputs. In the chart shown in Figure 4 on page 3, the triangle
represents the color gamut that is an arbitrary set of red,
green, and blue LEDs. The three points of the triangle are
the (x, y) coordinates of each respective LED. The area
inside the triangle is the gamut of achievable colors with this
particular set of three LEDs. Any (x, y) coordinate within the
triangle can be input into the system, providing a broad
range and high resolution of unique colors that are produced
with this system. If dimming values are pre-stored in the
Flash memory, the system is limited to the colors that have
been predefined in the Flash or EEPROM memory.

Second, the dynamic method enables the use of feedback.
The characteristics of LEDs such as color coordinates,
lumen output, and forward voltage change with the junction
temperature and lifetime of the LEDs. Therefore, this
method makes it possible to feed back junction temperature
or lifetime measurements into the system. You could then
dynamically adjust the base (x, y) coordinates and lumen
ratings of the LEDs, compensating for environmental
changes like ambient temperature. If the static method of
pre-storing dimming values into the Flash memory is used,
feedback of any sort generally becomes unfeasible.

Finally, a third advantage is that the system becomes
simpler from a high level standpoint. The internal complexity
of the dynamic method is greater than the static method, but
being able to define desired mixed colors in CIE 1931
coordinates is simpler and more user-friendly than defining
colors with dimming values.

This system implements a fully dynamic method of color
mixing. All the input variables of the system are exposed to
an I2C master that can dynamically update any of the inputs.
This causes the EZ-Color device’s firmware to respond
accordingly.

Color Mixing
Figure 3 shows the inputs of the firmware and the translated
outputs. The mathematical functions in this section describe
how the three dimming values are obtained from one
(x, y, Y) coordinate.

The first step is the creation of a matrix, as shown in
Equation 3. The color subscript (for example, red) denotes
the x or y value of the respective red, green, or blue LEDs in
the system. The “mix” subscript denotes the x or y value of
the input color coordinate request.

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

=

111

mix

mixblue

mix

mixgreen

mix

mixred

mix

mixblue

mix

mixgreen

mix

mixred

y
yy

y
yy

y
yy

y
xx

y
xx

y
xx

A
 (3)

The first mathematical operation is taking an inverse of the
previous matrix, as seen in Equation 4.

1' −= AA (4)

After the matrix inversion, the LED dimming data is solved
and is located in the matrix elements a’02, a’12, and a’22. The
next step is to factor in the total flux information of that color.
This is done by a matrix multiplication as seen in Equation 5.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∗=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

mixblue

green

red

Y
A

Y
Y
Y

0
0

' (5)

The value of Ymix is the number of lumens that the total
mixed light output must produce. The resultant Y values of
the product are the lumen output of each respective LED
that is necessary to create the requested color and flux. At
this point all the math operations give rise to two benefits. If
any of the final product’s Y values in Equation 5 are
negative, it signifies that the requested color coordinate is
invalid and the LEDs in the system cannot create that color.
In other words, the requested color is outside of the gamut
of the LEDs. The second item to check is if any of the
product’s Y values are larger than the maximum lumen
output of any of the three LEDs. If this is the case, then it
means that the Ymix input is too large, and the LEDs in the
system cannot create that much total flux at the given (x, y)
coordinate. The firmware checks to see if either of these
conditions occurs. If the (x, y) coordinate is invalid, the
firmware turns the LEDs off and reports an error. If the
requested flux is too large, the firmware scales back the
values so that they produce the maximum possible flux at
the requested (x, y) coordinate.

(12
max,

−∗= N

red

red
red Y

Y
DimValue) (6)

Equation 6 expresses how a dimming value is produced
from the Yred value (the exact same equation would also
apply to the other colors). Ymax,red is the lumens that the red
LED has if it is not dimmed at all, which is its maximum flux.
N is the number of bits of resolution that the hardware
dimmers have. In this system, N is equal to 8. After applying
this equation to each color channel, each channel has a
unique dimming value that is applied to the PrISM hardware
LED dimmers.

The Color Mix task from Figure 1 on page 2 does the math
described in this section, which produces the dimming
values from the color vector input. Many parts of the math
are optimized to execute faster and use less code space by
not performing unnecessary operations. For instance, most
of the operations of Equation 5 are unnecessary because
they always multiply by zero. As a result, this part of the
math is not executed in firmware.

Figure 5 on page 5 shows the block diagram of the Color
Mix task. It shows how all the data variables stored in the
RAM factor into the math equations of the task.

April 9, 2008 Document No. 001-16035 Rev. *B 4

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_4

AN16035

April 9, 2008 Document No. 001-16035 Rev. *B 5

The values for VF and IF are either measured directly with
an analog-to-digital converter (ADC) on the EZ-Color, or
static values are used because VF only changes slightly and
IF is typically held constant by the LED driver. The products
of each VF and IF value is then multiplied with the respective
dimming value of each LED, this produces the average
power dissipation of each LED. These values can then be
used in Equation 7 to produce TJ for each LED. After this
has been determined, new values for the maximum flux and
(x, y) coordinate variables for each LED is updated.

Temperature Compensation
The forward voltage, color, and flux of an HBLED can
significantly change as a function of its junction temperature
(TJ). TJ is highly dependent on uncontrollable environmental
factors, such as ambient temperature. For this reason, it is
advantageous to monitor TJ so that variations in the LED
characteristics are compensated for. The theory behind this
process is made possible by the following equation:

DJBBJ PTT ∗+= θ (7) Figure 6 details the flow of the Temperature Compensation
task from Figure 1 on page 2. It shows how the task
determines the TJ of each LED, applies transfer functions to
determine how LED characteristics change, and updates the
RAM variables to reflect these changes.

Equation 7 shows the relationship between the measured
temperature of the circuit board (TB) and the junction
temperatures of the LEDs. θJB is the thermal resistance
between the junction of an LED and the board. A good
approximation of this value is obtained by using the thermal
resistance value from an LED data sheet. PD is the power
being dissipated by the LED. This is shown in Equation 8.

Figure 6. Temperature Compensation Task Flow Chart

()%DimIVP FFD = (8)

Figure 5. Color Mixing Process Flow Chart

Final Tasks
The final two primary tasks seen in Figure 1 on page 2 are
the Loop Timer and the Drive LEDs with Dimming Values
tasks. The Loop Timer task is a variable clock resource
available to the EZ-Color (called VC3) and can generate
interrupts with every rising edge. These interrupts
decrement a variable, which creates a down counter in the
firmware. The Loop Timer task delays until the down counter
reaches zero, at which point it resets the counter to an
appropriate value. This timing system is set up so that the
main loop takes roughly 10 ms to execute. Any execution
path through the main loop must not exceed the loop time of
10 ms.

The Drive LEDs with Dimming Values task is implemented
by the PrISM hardware on the EZ-Color device. The PrISM
channels have API functions that make it easy to apply the
dimming values to produce correct signal densities. After the
dimming values are determined by the rest of the firmware,
it is easy to apply these values to the PrISM modules. The
hardware then modulates its signal density output to control
the LED current-driving circuitry to create the desired flux.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_5

AN16035

LED Bin Information
The challenge that HBLEDs present in a design is their
variance in characteristics from part to part. Therefore, LED
manufacturers have devised systems of codes that denote
the characteristics of a given lot of LEDs. These codes are
called “bin codes,” and typically there exists a code for light
wavelength (color), forward voltage, and luminous flux.
There is little standardization between manufacturers
regarding bin code systems. As a result, each brand of LED
may have its own unique system of bin codes.

This firmware was developed using Luxeon® K2 LEDs
made by Lumileds™. It is necessary to create a file to store
the bin information and make it available at compile time. In
this project, this file is called bin_tables.h. It contains a large
amount of preprocessor code that defines the correct LED
characteristic values in the executable firmware, based upon
what bin codes the LEDs have that are in the system. The
different codes in the bin_tables.h file follow the bin code
system that Lumileds LEDs use.

Code 1
#define R_LUMEN_BIN ('R')

#define G_LUMEN_BIN ('R')

#define B_LUMEN_BIN ('P')

Code 1 shows the location of the flux bin code in
bin_tables.h. Note that in the code the red and green LEDs
have their luminance bin codes set to ‘R’, and the blue LED
has its bin code set to ‘P’. The ‘R’ and ‘P’ bin code values
make sense in the context of the Lumileds Luxeon K2
documentation. After the bin codes in Code 1 are changed,
the project is rebuilt for the changes to take effect. Code 2
shows preprocessor commands. When the bin code is set to
‘R’, the commands define the R_MAX_LUMENS string with
the value 11712. The Lumileds flux bin ‘R’ means that the
LED produces 45.75 lumens on average at a rated current
of 350 mA. The value of 11712 is 45.75 multiplied by a
scaling factor of 256 so that it is not a floating point number.
After the definition is made, the value is used in the
executable firmware code for calculations that require the
maximum rated lumens of an LED. It must be noted that
setting up the bin_tables.h file is not very difficult, because it
is often just a transcription of data from a manufacturer’s
documentation.

Code 2
#if(R_LUMEN_BIN == 'P')

#define R_MAX_LUMENS (6925)

#endif

#if(R_LUMEN_BIN == 'Q')

#define R_MAX_LUMENS (9011)

#endif

#if(R_LUMEN_BIN == 'R')

#define R_MAX_LUMENS (11712)

#endif

Conclusion
This application note provides an overview of the different
firmware processes that take place in designing RGB LED
color mixing using an EZ-Color device. To get a complete
look at this system, refer to other associated application
notes. To gain a better understanding of the code, the
project associated with this application note is examined and
thoroughly commented. To see this project in action with
hardware, use the CY3261A-RGB kit.

April 9, 2008 Document No. 001-16035 Rev. *B 6

[+] Feedback

http://www.cypress.com/design/DK10119
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_6

AN16035

About the Author
Name: Ben Kropf

Title: Applications Engineer

Background: Past studies include
electrical engineering at Seattle Pacific
University. Has been working on using
PSoC and EZ-Color in many different
applications. Ben enjoys the fact that
mixed-signal arrays are used for such a
wide variety of purposes.

Contact: btk@cypress.com
 425.787.4867

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their
respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

April 9, 2008 Document No. 001-16035 Rev. *B 7

[+] Feedback

mailto:btk@cypress.com
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-16035_pdf_p_7

	Application Note Abstract
	Introduction
	Accompanying Hardware and Software
	High Level Firmware
	Color Mixing Inputs
	Color Mixing Outputs
	Dynamic Color Mixing
	Color Mixing
	Temperature Compensation
	Final Tasks
	LED Bin Information
	Conclusion
	About the Author

