

Implementing an Integrated DMX512 Receiver
Using the EZ-Color HB-LED Controllers

June 30, 2008 Document No. 001-47023 Rev. ** 1

AN47023
Author: Mukund Krishna
Associated Project: Yes

Associated Part Family: CY8CLED16, CY8CLED08, CY8CLED04
GET FREE SAMPLES HERE

Software Version: PSoC Designer™ 4.4
Associated Application Notes: None

Application Note Abstract
This application note introduces the DMX512 communication standard. It describes the implementation of a DMX512 receiver
using Cypress‘ EZ-Color™ family of devices. The same device can also control the LED based light fixtures. This application
note includes example code and an example project for PSoC Designer™.

Introduction
DMX512 is derived from Digital MultipleX with 512 pieces of
information. It is maintained by the Entertainment Services
and Technology Association (ESTA) and is officially known
as E1.11-2004 USITT DMX512-A. DMX512 is developed as
a non-command based protocol to enable the
interoperability of systems made by multiple manufacturers.

DMX512 describes the digital data transmission between
controllers and lighting equipment and other accessories. It
is a serial, digital, packet based protocol that specifies the
‗daisy-chain‘ method of connecting multiple slaves to a
DMX512 host, with a maximum of 512 slaves on one bus.
The transmission speed is 250 Kbps and the electrical
specifications are governed by the RS485 standard
(differential signaling) with 5-pin XLR as the interface
connectors.

This document provides an overview of the communication
protocol defined by DMX512. It also includes the detailed
procedure to implement a DMX512 receiver and LED
controller using Cypress‘ EZ-Color family of devices
(CY8CLEDxx) and the CY3261A RGB evaluation kit.

Figure 1. CY3261A EZ-Color RGB Evaluation Kit

DMX512: The Standard

The standard covers electrical characteristics, data format,
data protocol, and connector type. The most important
aspects pertaining to the implementation of the receiver are
the data protocol and format.

The data is transmitted in discrete packets, with 513 slots of
data in each packet. Figure 2 shows the format of a packet
in the form of a timing diagram. The first slot or byte
contains the start code and the remaining 512 bytes contain
dimming data for the slaves connected. The start code is the
first byte of data in the packet and informs the receiver the
following details of the data in the packet (it is NULL for
dimming data). The standard specifies a maximum of 512
slots in each packet.

 The idle state of the bus is ‗high‘, called ‗mark‘.

 The packet starts with a period of low, called ‗break‘,
followed by a high (mark).

 The actual byte then starts with LSB, followed by two
stop bits.

 The slot ends with a mark (high) before the next slot
starts.

The bit rate is 250 Kbps and the refresh rate for the packet
(with 512 slots) is typically 44 Hz. From the receiver‘s
perspective, the time allotted for a break before a packet is
between 88 and 176 uS.

The standard states the electrical specification to be
followed according to the EIA-485 standard (differential
signaling) and the use of 5-pin XLR connectors as interfaces
between the physical layer devices and the cables.

Cypress‘ DMX512 Receiver solution supports the latest
version of the standard released in 2004.

[+] Feedback

http://www.cypress.com/samplerequest
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_1

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 2

DMX512: The System

The typical DMX512 system comprises a DMX host that
controls up to 512 receivers. The DMX512 standard
specifies unidirectional flow of data to the controlled element
(the light fixture), to control its intensity. However, the latest
version of the standard does allow optional implementation
of Enhanced Function topologies using alternate start codes
(non-NULL), which allow bi-directional data.

The host has a DMX512 transmitter that assembles the
packet and transmits it over the bus, as shown in the packet
structure in Figure 2. The host also includes an EIA-485
(RS485) PHY that interfaces to the actual wires.

Figure 3 represents a typical DMX512 system.

 The multiple receivers are connected to the DMX host
in a daisy-chain manner and every packet goes through
every receiver in entirety.

 At each receiver, the differential signal is received by a
PHY and given to the receive side controller.

 Each receiver is programmed with a specific slot
address so it knows which slot it has to extract from
each packet.

The receiver can also extract multiple slots from every
packet and thereby control more than one light fixture or
more than one attribute of a light fixture.

Figure 2. DMX512 Packet Breakdown
(Source E1.11-USITT DMX512-A Standard)

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_2

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 3

Figure 3. Representation of a Typical DMX512 System

Each packet goes through every receiver in the 'daisy-chain'

DMX512 Receiver

1

DMX512 Host

(Transmitter)

DMX512 Receiver

2

DMX512 Receiver

N

N < 513

The DMX512 Universe

Each receiver can control one or many light fixtures

EZ-Color Solution for DMX512: An Overview

The EZ-Color solution for a DMX512 system is the
implementation of the receiver that controls the light fixtures.
The EZ-Color device provides the following functionalities:

 Dynamically sets its address during run time.

 Extracts the required data (possibly multiple slots or
bytes) from every received packet and stores it in a
buffer.

 Dims the HB-LED based light fixtures via a switching
regulator (either IC based or EZ-Color based) according
to the dimming data received.

 If data is in the form of a color coordinate, processes
the data using a color mixing algorithm (on the M8C)
and drives 3 or 4 channels.

Therefore, the EZ-Color device (CY8CLEDxx) forms the
receiver and controller in a DMX512 based lighting
communication system.

Figure 4 is a representation of the system level solution
using the EZ-Color controllers as DMX512 receivers.

 The DMX512 host sends signals based on the RS485
signaling standard to its universe.

 The signals are first received by the RS485 Physical
Layer device that has two functions:

 Convert the RS485 voltage levels to TTL voltage
levels compatible with EZ-Color.

 Retransmit the incoming signals to enable daisy-
chaining more receivers.

 The EZ-Color device receives the packet (through the
RS485 PHY) via a GPIO port pin and according to the
address programmed.

 The address of the EZ-Color based receiver can be
dynamically changed using a simple button interface
instead of ‗dip‘ switches. This is shown in the firmware
project accompanying this application note.

 The receiver then extracts the particular sequence of
slots from each packet. These are stored in a buffer
memory.

 The dimming values stored in the buffer are passed
onto the EZ-Color SSDM modules to vary the signal
densities of their outputs. Alternatively, if the data is in
the form of a color coordinate, it is passed onto a color
mixing function in firmware.

 The SSDM modules are based on Cypress‘ PrISM™
(Precise Intensity Signal Modulation) technology that is
similar to the PWMs with added benefits such as
reduction in EMI and low frequency flicker.

 The outputs of the SSDM modules are routed out of the
device through GPIO port pins and given to buck
regulators that drive the high brightness LEDs.

 Each SSDM output is considered a channel. Therefore,
a string of LEDs can be connected to one channel and
they are dimmed identically.

 An EZ-Color receiver can control multiple channels of
LEDs simultaneously because it can extract multiple
slots of data from every packet.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_3

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 4

Figure 4. EZ-Color System Solution

DMX512 Host

(Non-Cypress)

EZ Color- CY8CLEDxx

Has SSDM modules to drive

switching regulator circuit and

DMX512Rx module to receive

dimming data from DMX bus

(Stores dimming data from packet

in RAM for user)

Multiple Switching

regulators

(To drive HB-LEDs)

RS485 PHY

Interfaces to EZ

color device and

loops DMX signals

out to rest of daisy-

chain

EZ Color- CY8CLEDxx

Has SSDM modules to drive

switching regulator circuit and

DMX512Rx module to receive

dimming data from DMX bus

(Stores dimming data from packet

in RAM for user)

Multiple Switching

regulators

(To drive HB-LEDs)

RS485 PHY

Interfaces to EZ

color device and

loops DMX signals

out to rest of daisy-

chain

To remaining receivers of

daisy-chain

Each receiver can control upto 16 lighting

fixtures of unique dimming values

Accompanying Hardware and Software

This implementation can also be carried out on the
CY3261A EZ-Color evaluation kit available from the
Cypress website at www.cypress.com.

This implementation requires the PSoC Designer software
tool. The latest versions of this software tool and service
pack are available for free download at www.cypress.com.

Firmware: High Level Overview

The overview of the firmware at a higher level of
abstraction is shown in Figure 5. To first understand the
firmware at this level, it is assumed that the DMX512 Rx
user module is correctly initialized. The procedure to
configure it is described in a later section of this
application note.

The chart in Figure 5 indicates the simplicity of the
firmware required to use the EZ-Color device as a
DMX512 slave.

 Initialization refers to defining the memory space
required by the user module to store the extracted
slots of data and informing it of the location in the
memory.

 The memory size also defines the number of slots the
module extracts from every packet.

 The address of the receiver (between 1 and 512) is
then defined.

 In a continuously running loop:

 The module changes its address dynamically if
requested by the user.

 The module waits till a packet is received.

 When it is received, the slots that are stored in
the previously defined memory space are used to
drive the different channels of LEDs to dim them
appropriately.

[+] Feedback

http://www.cypress.com/
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_4

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 5

Figure 5. Flow of Firmware

Change address of

Rx if new address

received

Power on

Initialize
Define memory space

for extracted data

Set address of

receiver and number

of slots to extract

Wait for new packet

Drive LEDs with

dimming values

Implementation with PSoC Designer

PSoC Designer is a development tool from Cypress
(available free for download from www.cypress.com) that
enables users to configure, customize, and efficiently
manage the programmable resources in the EZ-Color
device family. Along with PSoC Programmer, the
development environment allows users to write related
firmware, compile, and build projects that are then
programmed into the EZ-Color devices.

The following are the steps to implement a simple
DMX512 receiver to dim three LEDs. A completed,
functional example project is attached as a zip file with this

application note. The project design is done such that the
receiver‘s implementation is tested using the CY3261A
RGB board. If a different development board or a custom-
designed board with an EZ-Color device is used, the pin
connections must be set up appropriately.

1. Open PSoC Designer and start a new project.

2. In the option to choose the device (after entering the
project name), select CY8CLED16 or CY8CLED08.
The CY8CLED04 can also be used if the number of
LED channels to be driven is two or less.

3. Select ‗C‘ in the ‗Generate ‗Main‘ file using:‘ option
and press Finish.

4. The user module selection view is displayed in the
device editor. From the categories on the left, select
the Digital Comm tab.

5. Clicking on the DMX512Rx icon shows the user
module data sheet in the window on the right. The
data sheet covers functional descriptions, electrical
specifications, parameters, APIs, and registers used
by the module.

6. Change to interconnect view.

Note To get familiar with using PSoC Designer, it is
recommended to take the online course at
http://www.cypress.com/training/

7. As shown in Figure 8, from the Digital Comm tab,
select the DMX512Rx and click on the yellow ‗+‘
button to select the module. Set the CPU clock to
Sys_Clk/1

8. Place the user module. It occupies one basic block
(DBBxx) and one communication block (DCBxx). The
communication block is the receiver part of the
module while the basic block is responsible for
detecting the start of a packet.

9. Set VC1 and VC2 to 12 and 16 respectively in the
global resources tab. This is to accommodate the
frequency requirements for the two blocks of the user
module. The communication block must have an input
frequency of 2 MHz and the basic block requires
anywhere between 91 and 166 KHz.

10. Set VC3 divider to 12 in the Global Resources tab.

11. Configure the user module as shown in Figure 7.

Note that the address of the receiver is set to ‗1‘. This
can be reset to the desired address or dynamically
changed in firmware.

12. Right click the user module in the selected user
modules window and rename it. In this project, it is
named DMX512_Rx.

[+] Feedback

../../../../../Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/KR2O6I5Z/www.cypress.com
http://www.cypress.com/training/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_5

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 6

Figure 6. Starting the Project in PSoC Designer

13. Using the same procedure, instantiate three 8-bit
SSDM modules from the LED Dimming category and
place them. They will each occupy a digital block. It is
not important what kind of block (basic or
communication) they occupy.

14. Rename them to SSDM_RED, SSDM_GREEN, and
SSDM_BLUE to denote the three channels.

15. Configure the three SSDM modules as shown in
Figure 9. These modules function based on Cypress‘
PrISM technology that reduces EMI and low
frequency flicker.

Figure 7. Configuration of DMX512Rx User Module

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_6

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 7

Figure 8. Choose the DMX512Rx User Module

Figure 9. SSDM User Module Configuration

16. Direct the ‗SSDMOut‘ of SSDM_RED,

SSDM_GREEN, and SSDM_BLUE to Row0Output2,
Row1Output3, and Row0Output0 respectively. All
other parameter configurations of the three modules
remain identical.

17. Connect port pin P1[1] to the input of the DMX512Rx
module‘s input, Row0Input1 (Figure 10).

Figure 10. Connection of Input to DMX512 Receiver

18. Similarly, connect the SSDM_RED module‘s output to
port pin P1[2], SSDM_GREEN module‘s output to pin
P1[3], and SSDM_BLUE module‘s output to pin P1[4].

19. This project is also implemented to enable daisy-
chaining more receivers using the interface board
shown in Figure 13. Therefore, pin 1[0] should be set
to a High-Z driver mode, so that connecting the RX
and TX of the RS485 transceiver chip directly loops
the input back to the output.

If this is implemented using a different board, and if
the DMX transmit signals are not coming from within
the chip and the incoming DMX signals need to be
looped back, ensure that the pin connected to the TX
pin is at High-Z drive mode.

20. To implement the functionality of dynamic addressing
of the receiver for the CY3261A kit, a communication
interface is set up between the USB chip and the
CY8CLED16 chip on the board.

21. Using the procedure detailed earlier, instantiate a
RX8 user module from the Digital Comm tab. Place it
in a digital communication block such as DCB12.

22. Configure the RX8 module as shown in Figure 11.

Figure 11. Configuration of RX8 User Module

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_7

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 8

23. Route pin P1[5] to Row_1_Input_1 to connected it to
the input of the RX8 module.

Note If the dynamically changeable address
functionality is not desired, ignore steps 20 to 23.

24. The basic configuration required to make the DMX512
receiver work and control the three LED channels is
now complete. Select the ‗Generate Application‘
option from the Config menu.

25. Change to the application editor view using the View
menu and open main.c from the source files tab.

The following is an example of the code that can be
written in main.c to implement a receiver controlling a
3-channel light fixture.

#define DMX_RAM_BUF_SIZE 3

BYTE DMX_RAM_BUF[DMX_RAM_BUF_SIZE];

The first line determines the number of slots to be
extracted and the second line defines the buffer in
memory that holds the slots.

void main()

{

 M8C_EnableGInt (a)

DMX512Rx_SetRamBuffer(DMX_RAM_BUF_SIZE,

&DMX_RAM_BUF[0]); (b)

 DMX512Rx_Start(); (c)

 SSDM_BLUE_Start();

 SSDM_RED_Start();

 SSDM_GREEN_Start();

 RX8_EnableInt(); (d)

 RX8_Start(RX8_PARITY_NONE);

 DMX512Rx_EnableInt(); (e)

 DMX512Rx_SetStartSlotID(1); (f)

Inside the main function:

 The global interrupts are enabled.

 The DMX user module is informed of the memory
buffer‘s location.

 The DMX512Rx and the three SSDM modules
are started.

 The UART receiver‘s interrupts are enabled and
the module is started.

 The DMX512 user module‘s interrupts are
enabled.

 If necessary, the starting address of the receiver
can be redefined.

26. Now the initialization is complete and the remaining
code periodically

 Checks if a new address is set and changes the
receiver‘s address accordingly.

 Waits for the packet to arrive.

 Writes the dimming values stored in the memory
buffer to the SSDM modules as their signal
densities.

while(1)

 {

 if (bAddrecd)

 {

 bAddrecd = 0;

 wDMXaddress = bRxBuf[0] + bRxBuf[1];

 DMX512Rx_SetStartSlotID(wDMXaddress)

;

 }

 while(DMX512Rx_bGetSlotActivity());

// Wait for required slot received

PWM_RED_WritePulseWidth(DMX_RAM_BUF[0])

; //Update the PWM pulse widths

PWM_GREEN_WritePulseWidth(DMX_RAM_BUF[1

]);

PWM_BLUE_WritePulseWidth(DMX_RAM_BUF[2]

);

}

Note On the CY3261A RGB board, the two buttons
are connected to the enCoRe™ USB chip. Therefore,
button presses must be communicated from the USB
chip to the CY8CLED16 chip. In this project, a UART
communication interface is set up to implement this.

27. To implement the RX8 receiver, the following code
should be inserted in the interrupt service routine of
the module. The file is RX8int.asm.

push A

 push X

 lcall RX8_bReadRxData

Append:

 mov X, [_bByteCount]

 mov [X+_bRxBuf], A

 inc [_bByteCount]

 cmp [_bByteCount], 2

 jnz Skip

 mov [_bByteCount], 0

 mov [_bAddrecd], 1

Skip: pop X

 pop A

This assembly code must be inserted in the file only
between the banners that specify the insertion of user
code. Placement of this code anywhere else in the file
can cause unpredictable behavior. This interrupt
service routine is executed every time the UART
receiver receives a set of bytes from the USB chip.

The code basically carries out the functionality of
storing the received information (address) into a
specific 2-byte buffer and sets a flag to indicate a new
address.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_8

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 9

28. The project is now ready to be built and programmed
into the device. Select the ‗Build‘ option from the Build
menu. This compiles all the files of the project and
generates a hex file if the compiler does not find any
errors.

Note To build this project, a compiler must be
installed for PSoC Designer. A free version and Pro
version of the compiler is available at
www.cypress.com/downloads.

When the project is successfully built, it can be
programmed into the EZ-Color device using the ‗MiniProg‘
via USB. The MiniProg is connected to the ISSP header
(of the EZ-Color device) on the CY3261A RGB board, if
this board is used for testing this design.

Selecting the ‗Program Part‘ option in the Program menu
carries out the programming task. This calls the PSoC
Programmer software. If the MiniProg is not detected,
select the correct port to which it is connected in the PSoC
Programmer software and click on Connect.

When the MiniProg is detected and there is a ‘connected‘
message at the bottom right, clicking on Program initiates
the programming process.

The procedure to set up the button functionality, LCD
display, and a UART transmitter on the USB chip is
described in Appendix B of this application note. The
completed PSoC Designer project for the CY7C64215
chip also accompanies this application note.

Hardware Interface

Any off the shelf DMX512 controllers can be used to test
this project. This section highlights the important details of
the test hardware being developed and used for a
DMX512 Receiver using EZ-Color.

 The controller transmits signals using the RS485
signaling protocol. Therefore, an interface circuit is
required between the controller and the EZ-Color
receiver comprising an RS485 PHY. It translates the
RS485 differential signals to 5V TTL signals as
depicted in Figure 3. The data out on the TTL side of
the PHY is connected to the DMX512 receiver‘s input
via the port pin P1[1] (or any other input pin).

 Often, the controller transmits at the 5V level because
it is within the voltage range of the RS485 protocol. In
this case, only for testing purposes, the positive
differential line can be connected directly to port pin
P1[1] (or any other input pin). The interface circuit is
also required for ESD and over-voltage protection and
must be present for a complete implementation.

 On the CY3261A, P1[1] is accessed via pin 4 of the
ISSP header of the EZ-Color device.

 The ground of the DMX controller and the EZ-Color
device must also be common. On the CY3261A RGB
board, it is pin 2 on the ISSP header of the EZ-Color
device.

 Power supply must be given to the LED driver circuits
and the EZ-Color device. On the CY3261A RGB
board, this is done by supplying 12V DC via the
power connector on board.

 Pins P1[5] and P1[7] of both chips on board the kit are
already connected to each other to enable either
I
2
C™ or UART communication interfaces.

The system is now fully setup and ready. Changing the
dimming values of the particular slots using the DMX
controller causes the respective LEDs to change
brightness. On the CY3261A board, this can be seen in
changes in brightness of the red, green, and blue LEDs.

As implemented, pressing the ‗Change Color‘ button
increases the receiver‘s address from 1 all the way to 512
before looping back to 1. Pressing the ‗On/Off‘ button
decreases the address and loops back to 512 from 1.

Summary
This application note provides an overview of the DMX512
communication protocol and details the method of
implementing a DMX512 Receiver that also controls the
LED based light fixtures. To get more details of the
features of EZ-Color and how to use them, read the
following application notes: AN16035—―Firmware RGB
Color Mixing Firmware for EZ-Color‖, AN33640—―Color
Mixing Accuracy with EZ-Color High Brightness LED
Controllers‖, AN15733—―Power Management – RGB
Color Mixing Hardware for EZ-Color Controllers‖,
AN14406—―Temperature Compensation for High
Brightness LEDs Using EZ-Color and PSoC Express‖,
AN44533—―ColorLock Optical Feedback for EZ-Color‖.
New application notes are constantly added to the
database on http://www.cypress.com/.

The projects associated with this application note contain
code with detailed comments. To see this project in action
with hardware, the CY3261A RGB kit may be purchased.

Figure 12 and Figure 13 shows the CY3261A RGB kit and
an off-the-shelf DMX host controller used to implement the
DMX512 system. The DMX controller has a 3-pin XLR
output which is connected to the RGB kit‘s inputs via the
ISSP header.

Figure 14 shows a schematic of possible interface circuit
that can be used between the controller and the CY3261
kit with XLR connectors on it to facilitate easy connections.

[+] Feedback

http://www.cypress.com/downloads
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_9

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 10

Figure 12. DMX512 System Implemented Using a Host
Controller and the CY3261A Evaluation Kits

Figure 13. CY3261A RGB Evaluation Kit with RS485
Interface Board

Figure 14. Schematic of Interface Circuit between DMX Controller and EZ-Color Device

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_10

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 11

Appendix A: Code for CY8CLED16

File: main.c

#include <m8c.h> // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

#define DMX_RAM_BUF_SIZE 3 //defines how many slots needed to stored

BYTE DMX_RAM_BUF[DMX_RAM_BUF_SIZE]; //RAM buffer that holds slot data starting from

 //the slot address

BYTE bRxBuf[2] = {1,0}; //buffer for I2C slave to receive address info

BYTE i, bByteCount = 0, bAddrecd = 0;

WORD wDMXaddress; //Variable that holds the receiver's current address

void main()

{

 M8C_EnableGInt; // Enable global interrupts

 DMX512Rx_SetRamBuffer(DMX_RAM_BUF_SIZE, &DMX_RAM_BUF[0]); //Set buffer

 DMX512Rx_Start(); // Turn on DMX512Rx User Module

 SSDM_BLUE_Start(); //Turn on the SSDMs to drive LEDs

 SSDM_RED_Start();

 SSDM_GREEN_Start();

 RX8_EnableInt(); //Turn on the RX8 receiver's interrupts

 RX8_Start(RX8_PARITY_NONE); //Turn on the RX8 receiver with no parity check

 DMX512Rx_EnableInt(); // Enable DMX512Rx interrupts

 while(1)

 {

 if (bAddrecd) //if a new address has been received, this flag will have been

 { //set by the RX8's interrupt service routine

 bAddrecd = 0; //Reset the flag

 wDMXaddress = bRxBuf[0] + bRxBuf[1]; //combine the 8-bit buffer values to form 16-

bit address

 DMX512Rx_SetStartSlotID(wDMXaddress); //Configure the address of the DMX512 receiver

 }

 while(DMX512Rx_bGetSlotActivity()); // Wait for required slot received

 SSDM_RED_WriteSignalDensity(DMX_RAM_BUF[0]); //Update the SSDM pulse widths

 SSDM_GREEN_WriteSignalDensity(DMX_RAM_BUF[1]);

 SSDM_BLUE_WriteSignalDensity(DMX_RAM_BUF[2]);

 }

}

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_11

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 12

File: RX8int.asm

_RX8_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)

 ;---

 ; Insert your custom code below this banner

 ;---

 ; NOTE: interrupt service routines must preserve

 ; the values of the A and X CPU registers.

 push A ;save A and X on stack

 push X

 lcall RX8_bReadRxData ;call the receiver's read API function

 ;This will store the received data in the accumulator A

Append:

 mov X, [_bByteCount] ;X is index for the buffer

 mov [X+_bRxBuf], A ;The received data is transferred from A to the buffer.

 inc [_bByteCount] ;the counter to track the num of bytes received is

incremented

 cmp [_bByteCount], 2 ;If 2 bytes have been received, that's one address

 jnz Skip ;if not, 1 more byte is remaining. Exit.

 mov [_bByteCount], 0 ;If 2 bytes have been received, reset the byte count and..

 mov [_bAddrecd], 1 ;Set the flag to indicate to the main program

Skip:

 pop X ;Restore original values of A and X

 pop A

 ;---

 ; Insert your custom code above this banner

 ;---

 ;@PSoC_UserCode_END@ (Do not change this line.)

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_12

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 13

Appendix B: Implementing Button Functionality and UART Tx with CY7C64215

1. Start a new PSoC Designer project and select the

device CY7C64215.

2. In the interconnect view, select the UART user
module from the Digital Comm tab; place it.

3. The module consists of a TX and an RX; only the TX
is required for this project. Configure the user module
as shown in Figure 15.

4. In the global resources table, set the VC1 divider to
‗12‘ and the VC2 divider to ‗2‘.

5. Route the UART‘s TX block‘s output to pin P1[5] via
Row_0_Output_1.

6. To facilitate the digital readout of the current address,
the LCD module is used. Select it from the Misc
Digital tab.

7. Place it and configure the port to Port 0 and disable
the bar graph.

8. Generate the project as explained previously and
move to the application editor view.

9. The code for the button functionality and the TX8
UART transmitter is not included in this application
note. However, the PSoC Designer project for the
CY7C64215 is available with this application note and
contains all the necessary code in a ready to build
form.

Figure 15. Configuration of UART User Module

About the Author
Name: Mukund Krishna

Title: Applications Engineer

Background: Mukund has a graduate degree in
Electrical Engineering from the
University of Southern California. His
past experiences at Cypress include
video broadcast products. He currently
works in the EZ-Color lighting solutions
group.

Contact: Mukund.Krishna@cypress.com

Phone: (408)-432-7058

[+] Feedback

mailto:Mukund.Krishna@cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_13

AN47023

June 30, 2008 Document No. 001-47023 Rev. ** 14

Document History
Document Title: Implementing an Integrated DMX512 Receiver Using the EZ-Color HB-LED Controllers

Document Number: 001-47023

Revision ECN Submission
Date

Orig. of Change Description of Change

** 2521105 06/27/08 UKK New application note

PSoC is a registered trademark of Cypress Semiconductor Corp. PSoC Designer and EZ-Color are trademarks of Cypress Semiconductor
Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2008. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‘ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47023_pdf_p_14

	Application Note Abstract
	Introduction
	DMX512: The Standard
	DMX512: The System
	EZ-Color Solution for DMX512: An Overview
	Accompanying Hardware and Software
	Firmware: High Level Overview
	Implementation with PSoC Designer
	Hardware Interface

	Summary
	Appendix A: Code for CY8CLED16
	File: main.c
	File: RX8int.asm

	Appendix B: Implementing Button Functionality and UART Tx with CY7C64215
	About the Author
	Document History

