

Firmware—Building Binning Tables for Color
Mixing Using EZ-Color HB-LED Controllers

July 23, 2008 Document No. 001-47518 Rev. ** 1

AN47518
Author: Mukund Krishna
Associated Project: No

Associated Part Family: CY8CLED04, CY8CLED08, CY8CLED16
GET FREE SAMPLES HERE

Software Version: PSoC Designer™ 4.4 or PSoC Express™ 3.0
Associated Application Notes: AN16035, AN33640

Application Note Abstract
Cypress’ EZ-Color™ HB-LED controllers enable the use of LEDs from different manufacturing bins for high color accuracy
color mixing lighting applications. This application note describes the procedure to build the binning tables in firmware for EZ-
Color.

Introduction
Cypress’ family of high brightness LED controllers enables
intelligent and diverse lighting designs using HB-LEDs.
Among the common applications using EZ-Color are light
sources that are dynamically able to change color output
on demand. It also includes tuning of white light to
different color temperatures. This is enabled by complex
firmware that is discussed in another Cypress application
note AN16035, Firmware–RGB Color Mixing Firmware for
EZ-Color.

One of the caveats with using HB-LEDs is that they come
in different bins. Manufacturers sort LEDs into different
bins based upon measured flux (luminosity), color
(wavelength), and forward voltage (Vf). This translates to
substantial variations in characteristics that must be
compensated in the color mixing algorithm. Table 1 shows
the effect on light output when changes in the LED
characteristics are not compensated for. An advantage of
the color mixing firmware developed by Cypress is that
significant care and cost need not be borne to procure
LEDs of the same bin. This is because the algorithm is
designed in a manner that drives the LEDs on the basis of
their rated characteristics. The use of this firmware helps
to maintain the characteristics of light output, irrespective
of change in certain LED characteristics such as rated flux
(luminosity) and dominant wavelength (color coordinates).

Table 1. Effect of Changes in LED Characteristics on Light
Output

Sl.No. Parameter Effect on Light Output

1 Luminosity (flux) Intensity, Color, Color Rendering
Index (CRI), Correlated Color
Temperature (CCT)

2 Color (dominant
wavelength)

Color, CRI, CCT

3 Forward Voltage Efficiency of driver

This is true only for colors that are within the gamut
formed by the individual LEDs. It is impossible for any
algorithm to produce a color outside that gamut. If the
color required is in the border of the gamut, there is a
good chance of placing that color point completely out of
that gamut using LEDs of different bins. This is illustrated
in Figure 1 by the black dot representing the color point.
During the development stage, ensure that the required
colors are produced with all possible bin combinations of
the different LEDs used.

Figure 1. Color Point on the Border of Gamut Falls Out of
Gamut if LED Bins are Changed

The color mixing firmware assumes that knowledge of the
LED characteristics such as color coordinates and rated
luminosity are present in firmware and uses that
information to determine actual dimming values. This
application note describes the method to build the binning
tables (for flux and color bins) in firmware in a form that is
usable by the color mixing algorithm.

For more detail on color accuracy, refer to the Cypress
application note AN33640, Color Mixing Accuracy with EZ-
Color High-Brightness LED Controllers.

[+] Feedback

http://www.cypress.com/samplerequest
http://www.cypress.com/design/AN16035
http://www.cypress.com/design/AN33640
http://www.cypress.com/design/AN16035
http://www.cypress.com/design/AN33640
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_1

AN47518

July 23, 2008 Document No. 001-47518 Rev. ** 2

Accompanying Hardware and
Software
The firmware described in this application note is included
with the CY3261A-RGB demonstration kit available at the
Cypress online store. Using this application note, the
firmware available with this kit can be modified quickly to
accommodate different LED manufacturers. The text file
associated with this application note is a header file for
use with PSoC Designer™ 4.4.

The implementations that follow require the PSoC
Designer software tool. The latest versions of both this
software tool and the latest service pack are available for
free download at www.cypress.com.

High Level Overview

In the color mixing firmware project, the binning
information is stored in a header file called bin_tables.h
(see Figure 2). Of the three types of bins, information
stored in this file pertains to color and rated flux bins.

Pre-processor statements in C language are useful to
implement structures such as binning tables. Using the
#DEFINE and #IF statements, a one-time definition of all
the bins are performed. A simple statement at the
beginning informs the algorithm of the actual bin being
used in that instance. Therefore, the entire binning table
can be designed and written into firmware during the
development stage and the same firmware can be used
throughout production, with just a simple change in the
letter code of the actual bin in use. The LED bins used
during development stage and production need not even
be the same.

It must be noted that the accuracy and consistency of light
output depends on the accuracy of the information stored
in the binning tables.

Steps to Build Binning Table in Firmware

Figure 2 shows the location of the header file in the
firmware’s file structure for the CY3261A-RGB
demonstration board.

Figure 2. Location of Header File with Binning Tables in CY3261A-RGB Firmware

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_2

AN47518

July 23, 2008 Document No. 001-47518 Rev. ** 3

This section details the steps to build or modify the binning
tables for flux and color bins in firmware given the LED
characteristics. This includes ‘C’ language syntax,
methods to calculate the numbers used, and the format to
store them.

The exact LED part number must be known and the
relevant data sheet and binning document must be
available. The following data is required from the data
sheet or binning document:

 Luminous flux bin codes and their minimum and
maximum flux values.

 Color bin (wavelength) codes and their maximum and
minimum wavelength values.

 Color coordinates of each color bin.
Note Sometimes this information is not present in the
data sheet or binning document and must be obtained
from the manufacturer, either in the form of test data
or color purity value (from which color coordinate is
calculated).

Part A: Flux Bins

1. Using the bin codes for the flux bins, a number of C
pre-processor code lines are written (or modified) for
each color LED that is used.

Note Some manufacturers have tighter luminous flux
bins (such as CREE 7090XR) that are sub groups of
main bins. For example, K2 and K3 are tighter sub
bins of the bin K. In the firmware, the pre-processor
statements do not accept multi-byte characters. So
the bins are labeled as numbers and K2 and K3 are 2
and 3 respectively. Bins M2 and M3 are 4 and 5
respectively.

Example:

#if(R_LUMEN_BIN == 'F')

#define R_MAX_LUMENS (3149)

//12.3 * 2^8

#endif

This section of pre-processor code checks if the
constant R_LUMEN_BIN (refers to the Red LED’s
bin) is ‘F’ and accordingly sets the constant
R_MAX_LUMENS (the rated flux of the bin). From the
CREE Xlamp-7090XR device binning and labeling
document (as an example), it is seen that for bin ‘F’,

a. The minimum flux at 350 mA is 10.7

b. The maximum flux at 350 mA is 13.9

c. The average flux of this bin is (10.7+13.9)/2
= 12.3

d. This number is scaled by 2
8
 so it is not a

floating point number. Therefore, 12.3 x 256
= 3148.8 ~= 3149.

2. The steps outlined in step 1 (a) to (d) are repeated
for every unique flux bin that is present in the LED
binning and labeling document. Figure 3 illustrates
what the statements look like for the Red LED.

3. The whole set of maximum lumen definitions are
then repeated for every unique color of LED. For
most manufacturers, the LED flux bins are common
across all colored LEDs. Hence, the firmware must
define the base lumens for each unique color LED.
At the end of this step, there should be ‘N’ sets of
pre-processor definitions with each set having ‘M’
individual definitions.

Here ‘N’ is the number of unique color LEDs. For a
3-channel color mix system, N = 3. ‘M’ is the number
of unique flux bins present in the data sheet. As an
example, for CREE 7090XR series, M = 14.

In total, there are 14 x 3 = 42 pre-processor
definition sets for flux bins.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_3

AN47518

July 23, 2008 Document No. 001-47518 Rev. ** 4

Figure 3. Luminous Flux Bins for Red CREE 7090XR Series

4. To complete the flux binning compensation, the
actual bins used in conjunction with this firmware
should be stated at the start of the file.

The lines that perform this function are:

#define R_LUMEN_BIN ('G')

 //From the CREE binning document

#define G_LUMEN_BIN ('H')

#define B_LUMEN_BIN ('J')

These pre-processor statements tell the firmware to
fix the base lumens values of the individual LEDs
according to the bins specified. As an example,
since R_LUMEN_BIN is defined as ‘G’, the firmware
searches for the appropriate #IF(R_LUMEN_BIN ==
‘G’) and fixes the rated lumen accordingly.

Part B: Color Bins

5. The next part of the binning firmware is the color
bins. These bins define the dominant wavelength for
each colored LED.

Many LED manufacturers supply only the dominant
wavelength values for each bin and omit the actual
color coordinate data. If necessary, this data must be
procured from the LED manufacturer.

Sometimes, LED manufacturers supply this
information as sample test data with four corner
points marking the boundaries of the region where
the color coordinates of an LED from that particular
bin could fall into. These points are usually close to
each other on the CIE chart and the average of the x
and y coordinates is calculated and used as the
color coordinate point of the LED of that bin.

Figure 4. Color Coordinates of Color Bin R2

Color coordinates of Bin R2

0.29
0.295

0.3
0.305

0.31
0.315

0.69 0.7 0.71 0.72

x

y y

Figure 4 shows what the distribution of color coordinates
of a sample of Red LEDs of the color bin R2 could look
like. LED manufacturers often do not publish this data and
it must be procured from them. The point in the center
denotes the point formed by averaging the x and y
coordinates of the sample LEDs. These coordinates are
used in the firmware corresponding to the bin code R2 as
explained in step 6.

Note that although the graph in Figure 4 seems to imply
that the points are far apart, the entire space represented
by the graph forms a very small part of the actual x-y color
space, with a difference of only 0.02 between the x and y
extremities.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_4

AN47518

July 23, 2008 Document No. 001-47518 Rev. ** 5

6. For each color bin, the average dominant
wavelength number is also calculated from the
minimum and maximum values provided.

The following pre-processor code defines the values
for each color bin:

#if(R_COLOR_BIN == 2)

 #define R_BASE_COLOR_X (

7003)

 #define R_BASE_COLOR_Y (

3005)

 #define R_BASE_LAMBDA (

622.5)

#endif

The average color coordinates calculated in step 5
are scaled by a factor of 10000 to eliminate decimal
points. Therefore, the x-coordinate is represented as
7003 (0.70025 x 10000) and the y-coordinate is
represented by 3005 (0.3005 x 10000). The
wavelength number, although present, is not used by
the firmware at this point.

For every color bin, a set of pre-processor statements
is written similar to the one shown earlier. So, if three
LEDs are used and there are three color bins per
LED, the total number of such statements is 3 x 3 = 9.

Figure 5 shows the color bin definitions in the
bin_tables.h file of the color mixing firmware.

Figure 5. Definition of Color Bins for Red LED

7. The final step to completing the color bin firmware is
to define which color bin LEDs are actually used in
the current project. Similar to the pre-processor
statements described in step 4, the color bin is
defined at the start of the file before all other pre-
processor statements:

#define R_COLOR_BIN (2)

#define G_COLOR_BIN (4)

#define B_COLOR_BIN (3)

This code is also seen in Figure 2. The #define
statements declare that the color bins used for R, G,
and B LEDs are 2, 4, and 3 respectively. As before,
the color bins may be called R2, G4, and B3. Here, 2
refers to R2 when used in reference with the constant
R_COLOR_BIN and G2 when used in reference with
the constant G_COLOR _BIN and so on.

Part C: Forward Voltage Bins

The change in forward voltage with different bins is a
detail that affects the regulator or driver circuit
responsible for driving current through the LEDs.
Therefore, the tolerance for different forward voltage
bins must be accounted for in the regulator and driver
circuit design.

The header file containing the binning information as
explained in this application note is attached as a text
file for reference. It gives an idea as to how the
complete file looks.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_5

AN47518

July 23, 2008 Document No. 001-47518 Rev. ** 6

Summary
This application note describes the steps to create or
modify LED binning tables in firmware for use with
Cypress’s HB-LED controllers. This process is performed
during development phase and allows the evaluation of a
multitude of LED flux and color bins. It also enables the
use of LEDs from multiple bins in a production design.

Note that color accuracy directly depends on the LED
characteristics programmed into firmware. Data from LED
data sheets and binning documents may not be sufficient
for extremely high color accuracy applications. For more
detail on color accuracy, refer to the Cypress Application
Note AN33640, Color Mixing Accuracy with EZ-Color
High-Brightness LED Controllers.

About the Author
Name: Mukund Krishna

Title: Applications Engineer

Background: Mukund has a graduate degree in
Electrical Engineering from the
University of Southern California. He
currently works in the EZ-Color lighting
solutions group, where he is
responsible for aiding customer
designs, designing collateral, and
product definitions.

Contact: Email: Mukund.Krishna@cypress.com
Ph: (408)-432-7058

[+] Feedback

http://www.cypress.com/design/AN33640
mailto:Mukund.Krishna@cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_6

AN47518

July 23, 2008 Document No. 001-47518 Rev. ** 7

Document History
Document Title: Firmware—Building Binning Tables for Color Mixing Using EZ-Color HB-LED Controllers

Document Number: 001-47518

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2542293 UKK 07/23/08 New Application Note

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, PSoC Express, and EZ-
Color are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2008. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-47518_pdf_p_7

