
BCR402W

LED Driver

- Supplies stable bias current even at low battery voltage
- Suitable for PWM control up to 100kHz
- Ideal for stabilizing bias current of LEDs
- Negative temperature coefficient protects LEDs against thermal overload
- Pb-free (RoHS compliant) package¹⁾
- Qualified according AEC Q101

Туре	Marking	Pin Configuration				Package	
BCR402W	W6s	1 = GND	2 = I _{out}	3 = V _S	$4 = R_{ext}$	SOT343	

Maximum Ratings

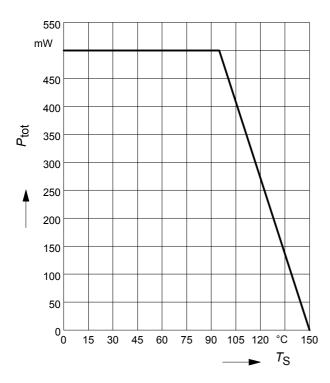
Parameter	Symbol	Value	Unit	
Source voltage	V _S	18	V	
Output current	I _{out}	60	mA	
Output voltage	V _{out}	16	V	
Reverse voltage between all terminals	V _R	0.5		
Total power dissipation, $T_{S} \le 95 \text{ °C}$	P _{tot}	500	mW	
Junction temperature	Tj	150	°C	
Storage temperature	T _{stg}	-65 150		

Thermal Resistance

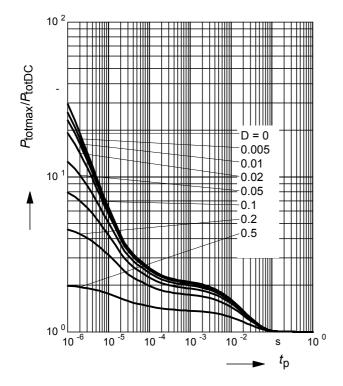
Parameter	Symbol	Value	Unit
Junction - soldering point ²⁾	R _{thJS}	≤ 110	K/W

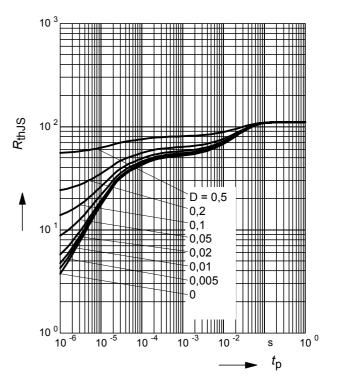
¹Pb-containing package may be available upon special request

 $^2 \rm For}$ calculation of ${\it R}_{\rm thJA}$ please refer to Application Note Thermal Resistance

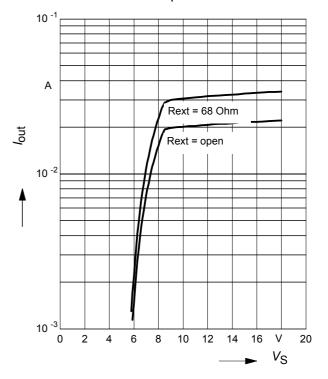

Parameter	Symbol	Values			Unit
		min.	typ.	max.	.
Characteristics	·				-
Supply current	I _S	350	440	540	μA
V _S = 10 V					
Output current	I _{out}	18	20	22	mA
V _S = 10 V, V _{out} = 7.6 V					
DC Characteristics with stabilized LED load	I				
Lowest sufficient battery voltage overhead	V _{Smin}	-	1.4	-	V
l _{out} > 18mA					
Voltage drop (V _S - V _{CE})	V _{drop}	-	0.75	-	
I _{out} = 20 mA					
Output current change versus <i>T</i> _A	Δ /out//out	-	-0.3	-	%/K
V _S = 10 V					
Output current change versus V_{S}	Δ /out//out	-	2	-	%/V
V _S = 10 V					

Electrical Characteristics at T_{Δ} =25°C, unless otherwise specified


Total power dissipation $P_{tot} = f(T_S)$

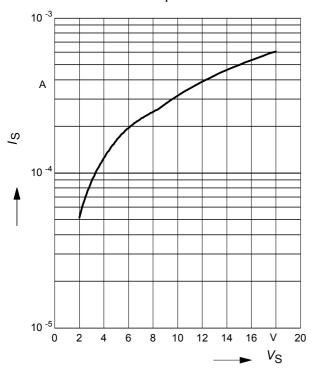

Permissible Pulse Load $R_{thJS} = f(t_p)$

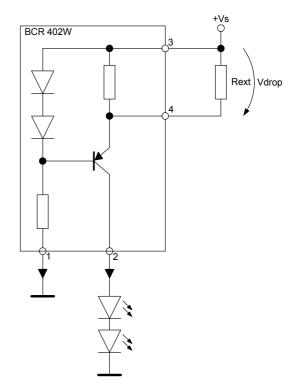
Permissible Pulse Load


 $P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$

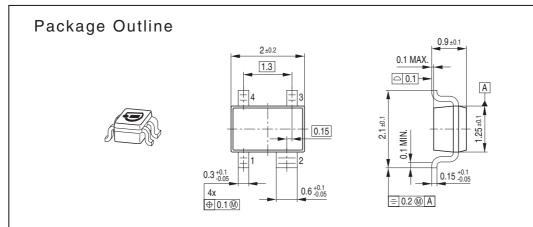
Output current versus supply voltage

 $I_{out} = f(V_S)$; R_{ext} = Parameter Load: two LEDs with V_F = 3.8V in series

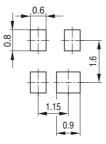


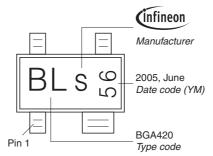

Supply current versus supply voltage

Application Circuit:

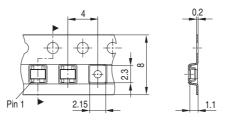

 $I_{\rm S} = f(V_{\rm S})$

Load: two LEDs with $V_{\rm F}$ = 3.8V in series





Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.