QNICHIA

Electrical properties of GaN LEDs \& Parallel connections

I. Outline

For reference on current and forward voltage, please consult Nichia's LED Product Guide 2004. In this example, Figure 1 provides the Forward Voltage of NSCW215 as 3.6 V (Typ), $4.0 \mathrm{~V}(\mathrm{Max})$ at $\mathrm{IF}=20 \mathrm{~mA}$. This indicates for a group of LEDs, the forward voltage - forward current characteristic is not a single fixed value. In a group of LEDs operating at 20 mA the voltage will be an average of 3.6 volts with a maximum of 4.0 volts. But for any given LED in the group the VF may be any value between 2.8 and 4.0 volts.

Typ. (V)	Max. (V)
3.6	4.0

Figure 1 Forward Voltage of NSCW215 (IF=20mA)

Therefore, when constructing a system where GaN-basis LEDs are connected in parallel, please note the following conditions.
\square Even if you energize the same voltage to the same product, the current can be different.
IIf the current value is different, the luminous intensity is also different.
IIf the current value is different, the color can also be different.

II . Parallel connection of GaN-basis LED
i) Example 1 (Acircuit with 2 resistors)

Designing following circuit with LEDs with different forward voltage characteristics.

Figure 1: Circuit Diagram

Supposition

Suppose as follows:
Powersupply voltage: 5 V
LED" " A " side 3.2 V at 20 mA with 90Ω
LED"B" side 3.8 V at 20 mA with 90Ω

The current value of I_{1} side is calculated as follows.
Postulation\#1

$$
\begin{aligned}
& \mathrm{I}_{1}=10 \mathrm{~mA} \\
& \mathrm{VR1}=10 \mathrm{~mA} \times 90 \Omega=0.9 \mathrm{~V} \\
& \mathrm{Vd}=5 \mathrm{~V}-0.9 \mathrm{~V}=4.1 \mathrm{~V}
\end{aligned}
$$

Refer to Fig. 2 which shows: $\mathrm{VF}=3.06 \mathrm{~V}$ at 10 mA
Therefore,Vd1 should be 3.06 V .
As the result, 10 mA of Postulation\#1 is not correct.

Figure 2 : Forward Voltage - Forward Current
Postulation\#2

$$
\begin{aligned}
& \mathrm{I} 1=15 \mathrm{~mA} \\
& \mathrm{VRl}=15 \mathrm{~mA} \times 90 \Omega=1.35 \mathrm{~V} \\
& \mathrm{Vdl}=5 \mathrm{~V}-1.35 \mathrm{~V}=3.65 \mathrm{~V}
\end{aligned}
$$

Refer to Fig. 2 which shows: $\mathrm{VF}=3.14 \mathrm{~V}$ at 15 mA
Therefore,Vd1 should be 3.14 V
As the result, Postulation\#2 is not correct but the " 15 mA "is more accurate than " 10 mA ".

Postulation\#3

$$
\begin{aligned}
& \mathrm{I} 1=20 \mathrm{~mA} \\
& \mathrm{VR1}=15 \mathrm{~mA} \times 90 \Omega=1.8 \mathrm{~V} \\
& \mathrm{Vdi}=5 \mathrm{~V}-1.8 \mathrm{~V}=3.2 \mathrm{~V}
\end{aligned}
$$

Postulation\#3 equal to the "Supposition"
The same way of calculation will result as $\mathrm{L}=15 \mathrm{~mA}$.
ii) Example 2 (Acircuit with 1 resistor)

The circuit with one resistance that is cost-effective.

Figure 3 : Circuit diagram
Supposition
Suppose as follows:
Power-supply voltage: 5 V
LED"A" side: 3.2 V at 20 mA
LED'B" side: 3.8 V at 20 mA

The current value of I_{1} side is calculated as follows.

Postulation\#1

$$
\begin{aligned}
& \mathrm{I} 1=20 \mathrm{~mA} \\
& \mathrm{~V} \mathrm{~d} 1=3.2 \mathrm{~V} \\
& \mathrm{~V} \mathrm{~d} 1=\mathrm{V} \mathrm{~d} 2
\end{aligned}
$$

Therefore,
$\mathrm{Vd} 2=3.2 \mathrm{~V}$
The current value of $I 2$ is 2 mA which is derived from Figure 2
Therefore, $I_{1}: I_{2}=10: 1$
In Fig.3,
Postulation\#2

$$
\begin{aligned}
& \mathrm{I}_{1}=20 \mathrm{~mA} \\
& \mathrm{~V} \mathrm{~d} 1=\mathrm{V} 2=3.8 \mathrm{~V}
\end{aligned}
$$

The current, I1, exceeds the scope of the graph of current vs. voltage shown in Fig.2. An LED used in this manner may also exceed Nichia's defined absolute maximum current. The luminous intensity of LED"A" compared to LED"B" will be noticeably different.

* Please refer to Nichia's product specifications for reference on the maximum allowable forward current.
* Please do not exceed the absolute maximum current when using Nichia LEDs.

3. Summary

When two LEDs of similar luminous intensity are driven at the same current, they will appear identical. This can be achieved using a parallel connection where both LEDs are at the same forward voltage. However, if the voltage changes the luminous intensity will change according to the forward current change of each LED.

As shown in Figure 1, adjusting the voltage with separate resistors will reduce variation in forward current resulting giving similar luminous intensity values. For the example of Figure 1, both resistors were the same thus the luminous intensity would not be the same. If the resistors were matched to the VF of the LED, the same luminous intensity could be achieved.

Theoretically one could consider very narrow VF binning as a solution. Practically this is not an answer. When the range of available product becomes small, the ability to ship decreases and the cost drastically increases. The best answer in this case is one which considers VF variation as a function of the product and strives to limit its effect on the system.

