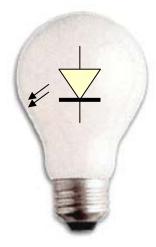


Power Electronics for Solid State Lighting

Reliability Considerations


6/24/2007

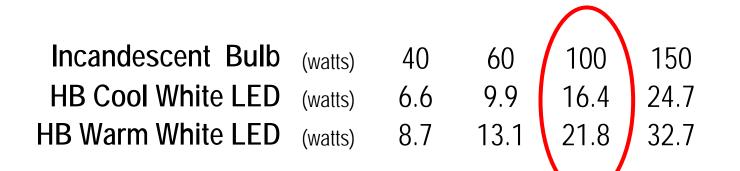
Don Mulvey Executive Vice President

The Value Proposition

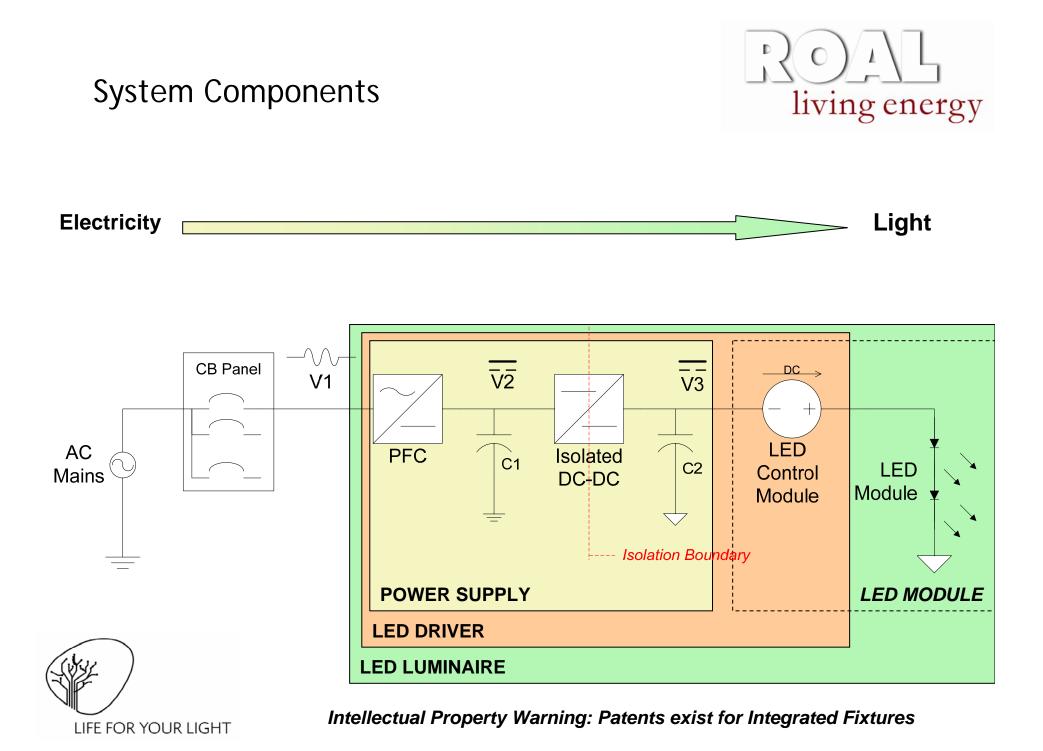
HB LED Technology Promises:

✓ Energy Savings
✓ Long Life
✓ Sustainability

Light Source Efficacy & Reliability

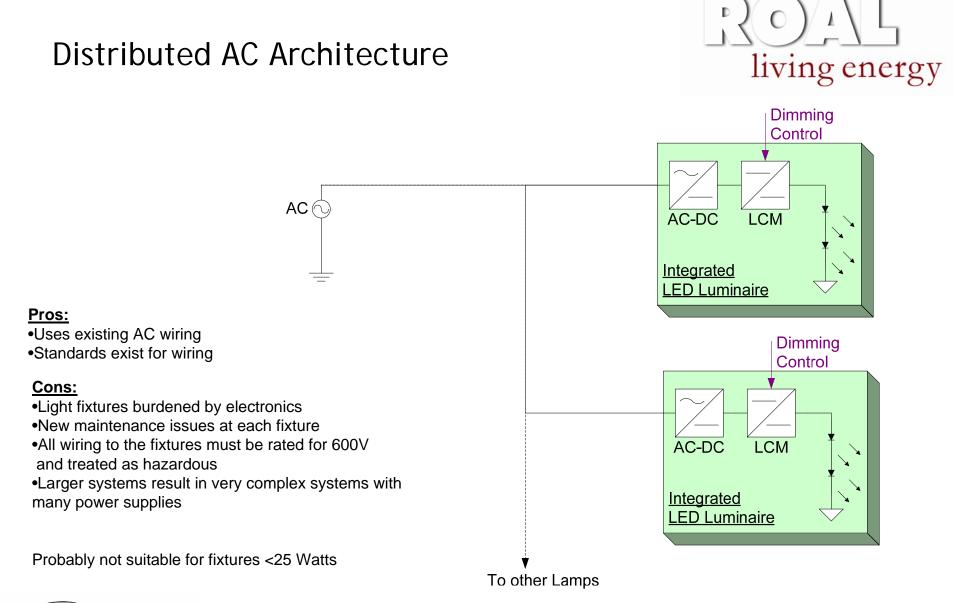

Туре	Watt	Typical Lumens	Lumen /Watt	ССТ	Life (hrs)
Incandescent Bulb	100	1200	12	2700	1000
Fluorescent Linear	18	1300	72	4000	10000
Compact Fluorescent	20	1200	60	4000	10000
Halogen	150	2700	18	3000	2000
High Pressure Sodium	50	3500	70	2000	12000
Metal Halide	100	6800	68	4000	15000
HB LED	Neutral (1.1W)	80	73	4100	>50000
Best in Class	Warm (1.1W)	60	55	3100	>50000

Perspective on Light


What's a lumen?

- We've lived with incandescent bulbs for 100+ years.
- 100W of Incandescent light is recognizable
- **LED** light output needs a familiar perspective.

*Does not factor in electronics efficiency



System Reliability

- **]** Factors all System elements into the analysis
-] LEDs 50,000 hr rating is based on LUMEN Maintenance, not MTBF:
 - ~5.7 years for 24 hour operation
 - ~17 years for 8 hour operation daily
- **]** System Complexity is a major consideration.
- The quantity of LED Control Modules depends on the number of lighting fixtures deployed
- The quantity of power supplies depends on the total power of the system, and the electrical architecture of the system

System Reliability: AC Architecture

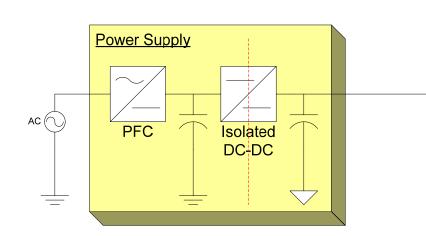
Design Spec

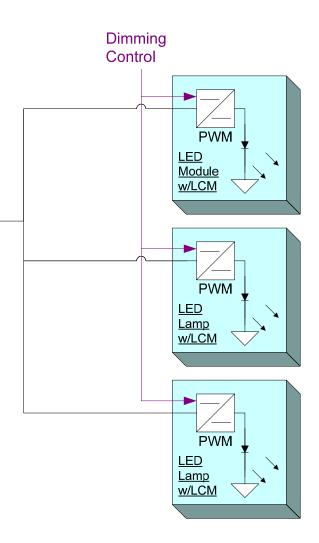
Total number fixtures100Light Output per fixture1200 LumensLuminaire Efficacy50 Lum/WattMax Power Per fixture24 wattsTotal Power Consumption2400 watts

100W bulb

MTBF Prediction		Design Margin			
Parameter	Units	Low	Med	High	
Avg AC-DC Converter Size	watts	25	25	25	
Total Qty AC-DC Converters	#	100	100	100	
Total Qty LED Control Modules (LCM)	#	100	100	100	
MTBF Rate for AC-DC @ 25C	hrs	300,000	500,000	750,000	
MTBF for LCM @ 25C	hrs	4,000,000	4,000,000	4,000,000	
AC-DC Failure Rate per 1M Hrs	#	3	2	1	
LCM Failure Rate per 1M Hrs	#	0.25	0.25	0.25	
Total AC-DC Failure Rate per 1M hrs	#	333	200	133	
Total LCM Failure Rate per 1M hrs	#	25	25	25	
Total Failure Rate per 1M Hrs	#	358	225	158	
Predicted MTBF for System	hrs	2,791	4,444	6,316	
Predicted MTBF for System	Days	116	185	263	
Predicted MTBF for System	Yrs	0.3	0.5	0.7	
Predicted MTBF for 8 Hr/365D operation	Yrs	0.96	1.52	2.16	

Distributed DC Architecture




Pros:

- •Removes AC-DC PS from Fixtures
- •Reduced Complexity over AC
- •Larger, higher power AC-DC reduces system complexity & cost
- •Redundancy is possible

Cons:

DC power must be distributed (new market requirement)DC distribution standards for buildings is limited

System Reliability: DC Architecture

Design Spec

Total number fixtures Light Output per fixture Luminaire Efficacy Max Power Per fixture Total Power Consumption 100 1200 Lumens 50 Lum/Watt 24 watts 2400

MTBF Prediction		Design Margi	n		
Parameter	Units	Low	High	Low	High
Avg AC-DC Converter Size	watts	250	250	1,200	1,200
Total Qty AC-DC Converters w/Redundancy	#	11	11	3	3
Total Qty LED Control Modules (LCM)	#	100	100	100	100
MTBF Rate for AC-DC @ 25C	hrs	150,000	500,000	50,000	350,000
MTBF for LCM @ 25C	hrs	4,000,000	4,000,000	4,000,000	4,000,000
AC-DC Failure Rate per 1M Hrs	#	7	2	20	3
LCM Failure Rate per 1M Hrs	#	0.25	0.25	0.25	0.25
Total AC-DC Failure Rate per 1M hrs	#	71	21	60	9
Total LCM Failure Rate per 1M hrs	#	25	25	25	25
Total Failure Rate per 1M Hrs	#	96	46	85	34
Predicted MTBF for System	hrs	10,453	21,645	11,765	29,787
Predicted MTBF for System	Days	436	902	490	1,241
Predicted MTBF for System	Yrs	1.2	2.5	1.3	3.4
Predicted MTBF for 8 Hr/365D operation	Yrs	3.58	7.41	4.03	10.20

A DC Architecture could reduce the number of Power Supplies Deployed.

This could significantly reduce the number of expected failures resulting in lower maintenance costs.

