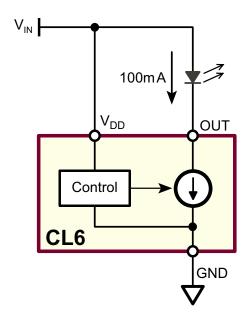
# Linear, Fixed, 100mA Constant Current LED Driver

### **Features**

- ▶ 100mA ±5% constant current drive
- ► Built-in reverse polarity protection
- Dimmable via PWM supply
- Overtemperature protection
- ▶ Tab ground allows direct heatsinking to chassis
- 90V max rating for transient immunity

## **Applications**

- Flashlights
- Specialty lighting
- Low voltage signage
- Low voltage lighting
- ► This device is not rated for automotive applications


### **General Description**

The CL6 is a fixed, linear current regulator designed for driving high brightness LEDs at 100mA from nominal 12V, 24V, or 48V supplies. With a maximum rating of 90V, it is able to withstand transients without the need for additional transient protection circuitry.

The CL6 is offered in both TO-252 (D-PAK) and TO-220 packages. The tab on the TO-220 is ground, allowing heatsinking directly to a chassis without the need for electrically insulating spacers.

Overtemperature protection shuts off the LED current when the die temperature rises above 135°C (nominal). Full LED current resumes when the die temperature falls below 105°C (nominal).

## **Typical Application Circuit**

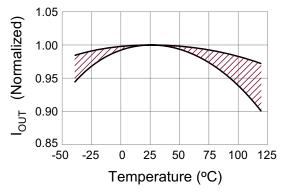


## **Ordering Information**

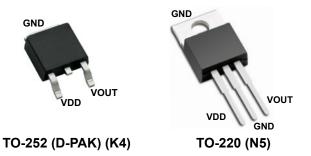
| Device | Package        | Options       |
|--------|----------------|---------------|
| Device | TO-252 (D-PAK) | 3-Lead TO-220 |
| CL6    | CL6K4-G        | CL6N5-G       |

-G indicates package is RoHS compliant ('Green')






## **Absolute Maximum Ratings**


| Parameter                        | Value           |
|----------------------------------|-----------------|
| Supply voltage, V <sub>DD</sub>  | -25V to +100V   |
| Output voltage, V <sub>OUT</sub> | -25V to +100V   |
| Operating junction temperature*  | -40°C           |
| Storage temperature              | -65°C to +150°C |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

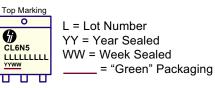
## $I_{\text{OUT}}$ vs Temperature



## **Pin Configurations**



## **Pin Designation**


| Pin | Name   | Description                                             |
|-----|--------|---------------------------------------------------------|
| VDD | VDD    | Supply voltage for the CL6                              |
| OUT | Output | Connect the LED between this pin and the supply voltage |
| GND | Ground | Circuit common                                          |

## **Product Marking**



YY = Year Sealed
WW = Week Sealed
L = Lot Number
\_\_\_\_\_= "Green" Packaging

3-Lead TO-252 (D-PAK) (K4)



3-Lead TO-220 (N5)

### **Thermal Characteristics**

Guaranteed by design – not production tested

| Guaranteeu D     | eed by design – not production tested |        |     |     |     |       |                                                  |  |  |  |  |  |  |  |
|------------------|---------------------------------------|--------|-----|-----|-----|-------|--------------------------------------------------|--|--|--|--|--|--|--|
| Sym              | Parameter                             |        | Min | Тур | Max | Units | Conditions                                       |  |  |  |  |  |  |  |
| Δ                | Thermal resistance,                   | TO-220 | -   | 2.5 | -   | °C/W  |                                                  |  |  |  |  |  |  |  |
| $	heta_{JC}$     | junction to case                      | D-PAK  | -   | 1.3 | -   | C/VV  |                                                  |  |  |  |  |  |  |  |
| Δ                | Thermal resistance,                   | TO-220 | _   | 62  | _   | °C/W  |                                                  |  |  |  |  |  |  |  |
| $\theta_{_{JA}}$ | junction to ambient                   | D-PAK  | _   | 40  | _   | 30/00 | Soldered to 2cm <sup>2</sup> exposed copper area |  |  |  |  |  |  |  |
| T <sub>LIM</sub> | Overtemperature limit                 | 120    | 135 | 150 | οС  |       |                                                  |  |  |  |  |  |  |  |
| T <sub>HYS</sub> | Overtemperature hystere               | sis    | -   | 30  | -   | οС    |                                                  |  |  |  |  |  |  |  |

<sup>\*</sup> Maximum junction temperature internally limited.

## **Recommended Operating Conditions** (all voltages with respect to GND pin)

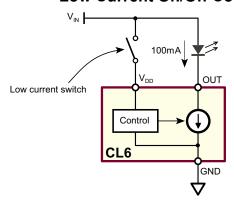
| Sym              | Parameter                                       |            | Min        | Тур      | Max      | Units | Conditions |
|------------------|-------------------------------------------------|------------|------------|----------|----------|-------|------------|
| V <sub>DD</sub>  | Supply voltage                                  | 6.5<br>6.5 | -          | 28<br>90 | V        |       |            |
| V <sub>OUT</sub> | Voltage at OUT pin <sup>1</sup> Normal Extended |            | 4.0<br>4.0 | -        | 28<br>90 | V     |            |
| $T_{j}$          | Junction temperature                            | 2          | -40        | -        | 119      | °C    |            |

#### Note:

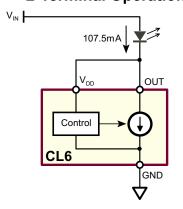
- 1. Continuous operation at high  $V_{OUT}$  voltages may result in activation of overtemperature protection. Use appropriate heatsinking.
- 2. Maximum junction temperature internally limited.

### **Electrical Characteristics**

(Over normal recommended operating conditions unless otherwise specified. All voltages with respect to GND pin. Production tested @ 25°C.)

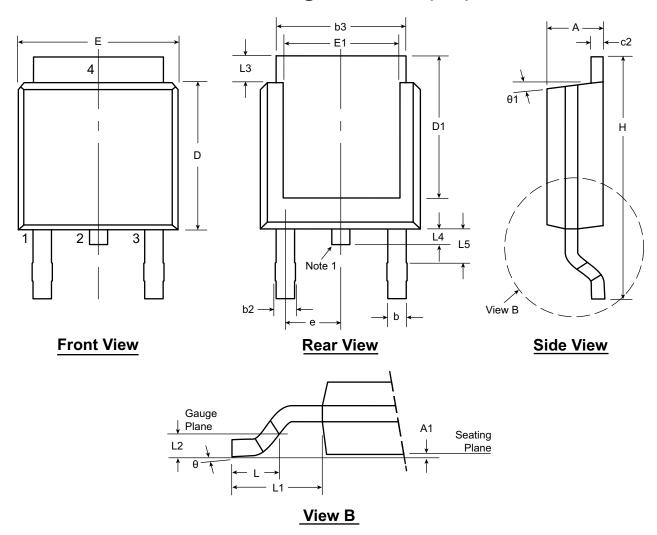

| Sym                   | Parameter                                          | Min            | Тур             | Max               | Units | Conditions                                                                                    |
|-----------------------|----------------------------------------------------|----------------|-----------------|-------------------|-------|-----------------------------------------------------------------------------------------------|
| I <sub>DD</sub>       | Current into V <sub>DD</sub> pin                   | 3.0            | 5.0             | 10                | mA    |                                                                                               |
| I <sub>OUT</sub>      | Current into OUT pin <sup>(3)</sup>                | 95<br>90<br>50 | 100<br>100<br>- | 105<br>110<br>120 | mA    | Normal conditions, 25°C<br>Normal conditions, full temp <sup>(4)</sup><br>Extended conditions |
| l <sub>OUT(OFF)</sub> | Current into OUT pin with V <sub>DD</sub> pin open | -              | -               | 10                | μA    | V <sub>DD</sub> = open                                                                        |
| V <sub>OFF</sub>      | Voltage at V <sub>DD</sub> to shut off LED current | -              | -               | 1.0               | V     | Ι <sub>ΟυΤ</sub> < 10μΑ                                                                       |
| t <sub>on</sub>       | V <sub>DD</sub> applied on delay                   | -              | -               | 100               | μs    |                                                                                               |
| t <sub>OFF</sub>      | V <sub>DD</sub> removed off delay                  | -              | -               | 100               | μs    |                                                                                               |

#### Note:


- 3. Thermal considerations may limit current to lower values. Use appropriate heat sinking.
- 4. Guaranteed by design not production tested.

## **Application Circuits**

### **Low Current On/Off Control**




### 2-Terminal Operation



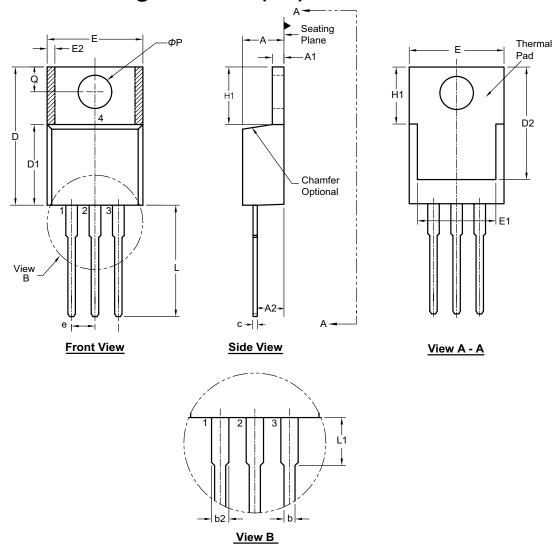
Minimum  $V_{IN}$  is increased by LED drop.  $I_{\rm LED}$  is increased by  $I_{\rm DD}$ 

## 3-Lead TO-252 D-PAK Package Outline (K4)



### Note:

1. Although 4 terminal locations are shown, only 3 are functional. Lead number 2 was removed.


| Symbo              | ol  | A    | <b>A1</b> | b    | b2   | b3   | c2   | D    | D1   | E    | E1   | е           | Н    | L    | L1          | L2          | L3   | L4   | L5   | θ   | θ1         |
|--------------------|-----|------|-----------|------|------|------|------|------|------|------|------|-------------|------|------|-------------|-------------|------|------|------|-----|------------|
|                    | MIN | .086 | -         | .025 | .030 | .195 | .018 | .235 | .205 | .250 | .170 |             | .370 | .055 |             |             | .035 | -    | .045 | 00  | <b>0</b> º |
| Dimension (inches) | NOM | -    | -         | -    | -    | -    | -    | .240 | -    | -    | -    | .090<br>BSC | -    | .060 | .108<br>REF | .020<br>BSC | -    | -    | -    | -   | -          |
| (1101100)          | MAX | .094 | .005      | .035 | .045 | .215 | .035 | .245 | -    | .265 | -    | 550         | .410 | .070 | 1121        | 550         | .050 | .040 | .060 | 10° | 15º        |

JEDEC Registration TO-252, Variation AA, Issue E, June 2004.

Drawings not to scale.

Supertex Doc. #: DSPD-3TO252K4, Version D070308.

## 3-Lead TO-220 Package Outline (N5)



| Symbol                |     | Α    | A1   | A2   | b    | b2   | С    | D    | D1   | D2   | E    | E1   | E2   | е           | H1   | L    | L1   | Q    | ФΡ   |
|-----------------------|-----|------|------|------|------|------|------|------|------|------|------|------|------|-------------|------|------|------|------|------|
| Dimension<br>(inches) | MIN | .140 | .020 | .080 | .015 | .045 | .014 | .560 | .330 | .480 | .380 | .270 | -    |             | .230 | .500 | -    | .100 | .139 |
|                       | NOM | -    | -    | -    | .027 | .057 | -    | -    | -    | -    | 1    | -    | -    | .100<br>BSC | -    | -    | -    | -    | -    |
|                       | MAX | .190 | .055 | .115 | .040 | .070 | .024 | .650 | .355 | .507 | .420 | .350 | .030 |             | .270 | .580 | .250 | .135 | .161 |

JEDEC Registration TO-220, Variation AB, Issue K, April 2002.

Drawings not to scale.

Supertex Doc. #: DSPD-3TO220N5, Version B070808.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <a href="http://www.supertex.com/packaging.html">http://www.supertex.com/packaging.html</a>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http://www.supertex.com.

©2008 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.