
1 Introduction

Application Report
SLVA267A–Mar 2007–Revised Mar 2008

Grayscale and Dot-Corrected LED Display Using TLC5941
and MSP430F427

Scot Lester... PMP Portable Power Applications

ABSTRACT
The TLC5941 LED driver uses a serial data interface to receive grayscale and dot
correction data. This application report discusses the hardware and firmware to drive
the TLC5941 with a MSP430F427 microcontroller.

Contents
1 Introduction .. 1
2 TLC5941 Driver Implementation Using the MSP430F427 2
3 TLC5941 Driver Firmware Code.. 6
4 Modified Blank Signal... 11
5 Driving Additional LEDs .. 11
6 Schematics... 12
7 Conclusion ... 14

List of Figures

1 Simplified Block Diagram Of Clocking Scheme .. 2
2 Main Loop Flow Chart.. 3
3 Interrupt and Subroutine Flow Charts.. 4
4 SHIFTOUT Flow Chart... 5
5 MSP430 Schematic ... 12
6 TLC5941 and Power Schematic .. 13

The TLC5941 is a 16-channel LED driver with 12-bit grayscale dimming and 6-bit dot correction
capabilities typically used for high-quality LED displays. The 192 bits of grayscale data and 96 bits of dot
correction data are entered into the TLC5941 via a serial interface. This application report presents an
example of the firmware necessary to drive the TLC5941 with a MSP430F427 microcontroller.

The serial interface is comprised of a shift register that is controlled by two signals, SLCK and SIN. One
bit of serial data is placed on the SIN pin of the TLC5941; then, a positive edge on the SCLK pin shifts the
data into the TLC5941 input register. Once all of the 96 or 192 bits have been shifted in, the XLAT pin is
pulsed high to latch the data from the input register into the grayscale or dot correction registers.

The TLC5941 also requires a clock signal, GSCLK, for the grayscale PWM function. This clock is used to
drive internal counters to derive the 12-bit grayscale dimming function. After 4096 grayscale clocks, the
internal counter must be reset to zero by pulsing the BLANK signal high. This clocking function has also
been included in the example MSP430F427 firmware to provide a stand-alone solution.

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

2 TLC5941 Driver Implementation Using the MSP430F427

GSCLK

BLANK

SIN

SCLK

MODE

XLAT

2-MHz
Internal Clock

16-Bit Counter/Timer

Count = 4097

Interrupt Routine

MSP430F427
Output Port Configuration

P1.1

P1.0

P1.2

P1.3

P1.4

P1.5

TLC5941

TLC5941 Driver Implementation Using the MSP430F427

Figure 5 and Figure 6 show the schematic of the hardware for the MSP430 – TLC5941 implementation.
The schematic shows the MSP430, the TLC5941, and power circuits needed to implement a complete
16-LED display drive. Additional TLC5941s can be cascaded on the serial communication bus to
accommodate any number of LEDs.

The hardware is configured so that the TLC5941 is controlled by six general-purpose I/O (GPIO) pins on
the MSP430 microcontroller. All six of these GPIO pins are configured as outputs on port one of the
MSP430. One output pin (P1.1) is configured to be driven by the internal MSP430 system clock. This
output pin drives the GSCLK of the TLC5941. The system clock, internal to the MSP430, also supplies the
clock to a 16-bit counter which also is internal to the MSP430. The counter is configured to count from 0 to
4097 with each clock pulse. When the counter reaches 4097, it generates an interrupt. An interrupt routine
then pulses the output bit that connects to the BLANK signal of the TLC5941. Figure 1 shows a simplified
block diagram of this clocking scheme. This clocking scheme makes the GSCLK and BLANK signal
generation transparent to the rest of the software. The firmware only needs to send dot correction and
grayscale data to drive the LEDs.

Figure 1. Simplified Block Diagram Of Clocking Scheme

Figure 2 shows a flow chart for the main loop of the firmware. The major portions of the communications
firmware resides in three subroutines which makes the main loop very simple. The main loop simply
initializes the output port, turns off the watchdog timer and configures the counter. Once these initialization
steps are complete, the main loop simply sends all of the dot correction and grayscale data stored in RAM
to the TLC5941 and then enters an infinite loop. The main loop ends in an infinite loop instead of halting
the processor so that the interrupt routines continue to operate and drive the LEDs.

The GSOUT routine is used to send all of the grayscale data stored in RAM to the TLC5941. The 12-bit
grayscale data is stored in RAM as left-justified, 16-bit words. Therefore, the lower four bits of each
grayscale data in RAM are ignored by the firmware and are not sent to the TLC5941.

The DCOUT routine is used to send all of the dot correction data stored in RAM to the TLC5941. The 6-bit
dot correction data is stored in RAM as left-justified, 8-bit bytes. Therefore, the lower two bits of each dot
correction data in RAM are ignored by the firmware and are not sent to the TLC5941. Figure 3 shows the
flow charts for the interrupt, GSOUT, and GSOUT routines

2 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

START

Initialize

Call DCOUT

routine

Call GSOUT

routine

Infinite Loop

TLC5941 Driver Implementation Using the MSP430F427

The GSOUT and DCOUT routines are similar and could be combined, together with the addition of some
flags and conditional statements. This was not done for this example to clarify the difference between
grayscale and dot correction communications. Both of these routines determine which byte of data in RAM
is to be sent, how many bits of that byte are to be sent, and then passes these two parameters to the
SHIFTOUT subroutine. The SHIFTOUT subroutine simply takes the byte of data and drives the bits of the
output port that drive the serial communication pins of TLC5941. Figure 4 is the flow chart for the
SHIFTOUT subroutine.

Figure 2. Main Loop Flow Chart

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

GSOUT Start

Store memory
address of

grayscale upper

byte in R8

Call SHIFTOUT

subroutine

Store memory
address of

grayscale lower

byte in R8

Load number of

Call SHIFTOUT

subroutine

Load number of

Has all

of the LED

data been

shifted ?

Return

NO

YES

Set bit controlling

BLANK to high

Clear bit

controlling BLANK

to low

Return

DCOUT Start

Store memory
address of dot

correction byte in

R8

Call SHIFTOUT

subroutine

Load number of

Has all

of the LED

data been

shifted ?

Return

NO

YES

Timer_AC Interrupt
Start

bits (#06) in R9 bits (#08) in R9 bits (#04) in R9

TLC5941 Driver Implementation Using the MSP430F427

Figure 3. Interrupt and Subroutine Flow Charts

4 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

SHIFTOUT Start

Store data byte to
be shifted out

(pointed to by R8)

in R10

Pulse bit

controlling SCLK.

First high then low.

Set the bit

controlling SIN to

the value of the

most significant bit

of data in R10

Have all

the bits been

shifted out?

Return

NO

YES

Shift R10 left one
bit

TLC5941 Driver Implementation Using the MSP430F427

Figure 4. SHIFTOUT Flow Chart

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

3 TLC5941 Driver Firmware Code
TLC5941 Driver Firmware Code

TLC5941 COMMUNICATIONS FIRMWARE
;
;Scot Lester
;Texas Instruments Incorporated
;February 2008
;
;This firmware was written for the MSP430F427
;
;The hardware is configured to have one general
;purpose I/O port (GPIO) configured as all bits being
;outputs. For this example, 6 bits of port one are used to
;drive the TLC5941. Each of the six used GPIO pins of the MSP430
;are connected as follows:
;
; PIN NAME TLC5941 FUNCTION
;
; P1.0 BLANK
; P1.1 GSCLK=2MHz
; P1.2 SCLK
; P1.3 XLATCH
; P1.4 MODE
; P1.5 SIN
; P1.6 not used
; P1.7 not used
;
#include "msp430x42x.h"

;---
; Definition of named constants
;---

#define BLANK (0x01)
#define SCLK (0x04)
#define XLAT (0x08)
#define MODE (0x10)
#define SIN (0x20)

;P1OUT is equal to the memory address of output port.

;---
; RESERVED RAM MEMORY FOR VARIABLES
;---

;Dot Correction values are stored sequentially in 8 bit bytes.
; The TLC5941 only needs 6 bits of dot correction data so the
; dot correction data is stored left justified in the 8 bit byte
; the two least significant bits of each 8 bit byte are set
; to zero in this example but the firmware ignores these
; two bits so they can be any value.
; For example, a binary dot correction value of 101010b = 0x2A
; is stored as 10101000b = 0xA8

ORG 0200h ; Start of RAM
EVEN ;Align data on even boundary

Dot
DB 0xFC ;CH0
DB 0xFC ;CH1
DB 0xF4 ;CH2
DB 0xF8 ;CH3
DB 0xF8 ;CH4
DB 0xFC ;CH5
DB 0xF4 ;CH6
DB 0xF0 ;CH7
DB 0xF4 ;CH8
DB 0xFC ;CH9
DB 0xFC ;CH10
DB 0xFC ;CH11
DB 0xF8 ;CH12
DB 0xF4 ;CH13
DB 0xF4 ;CH14
DB 0xF8 ;CH15

;

6 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

TLC5941 Driver Firmware Code

;
;Grayscale values are stored sequentially in 16 bit words.
; The TLC5941 only needs 12 bits of grayscale so the
; grayscale data is stored left justified in the 16 bit word
; the four least significant bits of each 16 bit word are set
; to zero in this example but the firmware ignores these
; four bits so they can be any value.
; For example, a hex grayscale value of 0xFFF
; is stored as 0xFFF0
;
Grayscale

DW 0xAFF0 ;CH0
DW 0xF000 ;CH1
DW 0xF000 ;CH2
DW 0xC000 ;CH3
DW 0xD400 ;CH4
DW 0xE000 ;CH5
DW 0xB000 ;CH6
DW 0xF000 ;CH7
DW 0xFFF0 ;CH8
DW 0x0000 ;CH9
DW 0x0000 ;CH10
DW 0x13F0 ;CH11
DW 0x2380 ;CH12
DW 0xE980 ;CH13
DW 0x0450 ;CH14
DW 0xBA30 ;CH15

;---
ORG 0C000h ; Starting Address of Program Space

;---

RESET ;reset jump vector jumps to here to start execution.

;
;Program execution begins here after power up and reset
;Typical start up routines should be located here.
;Routines to initialize the stack pointer, watch dog timers, parallel I/O
;ports etc. etc.
;the General Purpose I/O port (P1) needs to be configured with bits 0:5
;set to outputs. At initialization, all output bits should be cleared to zero.
;this is not shown since it is processor specific.
;Bit P1.1 has a special configuration. The output bit is driven by the
;MSP’s internal oscillator which is set to 2MHz. This drives the
;grayscale clock of the TLC5941. Since the output signal is simply the
;system clock, there is no need for the firmware to manipulate this bit.
;The grayscale clock will run continuously.
;

MOV.W #600h,SP ;Initialize stack pointer to location 600 hex
MOV.W #WDTPW+WDTHOLD,&WDTCTL ; Stop Watchdog Timer

BIS.B #0xFF,&P1DIR ;make all port one GPIO pins outputs
BIS.B #0x02,&P1SEL ;p1.1 = peripheral module output for GSCLK signal.
MOV.B #0x00,&P1OUT ;Initialize all outputs to zero

BIC #GIE,SR ;Turn all interrupts off

;The following commands configure several clocks that are specific to the
;MSP430F427. These commands configure an internal phase locked loop (PLL)
;to generate a 2MHz stem clock from a 32.768KHz external crystal.

MOV.B #63,&SCFQCTL ;set MCLK=64*ACLK or 2MHz
MOV.B #FN_2,&SCFI0 ;set DCO range
BIS.B #02,&FLL_CTL1 ;set ACLK/4
BIC.B #01,&FLL_CTL1 ;set ACLK/4
BIS.B #XCAP18PF,&FLL_CTL0 ;Set load capacitance for xtal

;The following is a delay loop. This delay is needed to wait until the
;crystal oscillator is stable before continuing to execute code. This
;step is MSP430 specific.

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

TLC5941 Driver Firmware Code

MOV.W #10000,R15 ;Initial value for a delay loop
Xtal_Wait

DEC R15 ;Delay for 32 kHz crystal to
JNZ Xtal_Wait ;stabilize

;***********************************
;SET UP TIMER TO MAKE BLANK SIGNAL
;***********************************
;
;This section sets up a 16 bit timer with interrupt capability. The timer
;is configured to count up to the decimal number 4097. The timer clock signal
;is supplied by the system clock which is also the GSCLK. The timer will count 4097
;GSCLKS and then initiate an interrupt. The timer automatically clears to zero
;then starts to count again to 4097.
;The interrupt routine simply toggles the
;Parallel I/O pin that is connected to the BLANK signal of the TLC5941.
;The TLC5941 will receive 4096 GSCLKS and then get a pulse on the BLANK
;pin to reset the internal counters of the TLC5941
;

MOV.W #OUTMOD_3+CCIE,&CCTL0 ;CCR1 toggle/set
MOV.W #4097,&CCR0 ;load timer value
MOV.W #TASSEL_2+MC_1,&TACTL ;SMCLK, up mode
BIS.W #GIE,SR ;enable timer interrupt for BLANK signal

;since the grayscale clock run continuously, this timer is used to automatically
;send out BLANK signals to start new display frames.
;This method makes the grayscale clocking transparent to the rest of the
;firmware.

;***********************************
;SEND DC AND GS DATA TO TLC5941
;***********************************

CALL #DCOUT ;call routine to move dot correction
;data to TLC5941

CALL #GSOUT ;call routine to move grayscale
;data to TLC5941

mainloop
NOP
JMP mainloop ;infinite loop when done

;---
; SUBROUTINES
;---

;***************************************
;SEND GRAYSCALE DATA TO TLC5941
;***************************************
;
;shift out Grayscale data stored in RAM to TLC5941
;clocks out as MSB of channel 15 first then works down through bytes in memory
;shifts of 12 bits per channel for a total of 192 bits.
;
GSOUT

MOV.W #16,R12 ;Register 12 is a loop counter.
;Loop through 16 LEDs.

MOV.W #Grayscale,R13 ;load register 13 with the starting address of the
;grayscale data stored in RAM. R13 will point to the
;byte to shift out.

ADD.W #32,R13 ;Add 32 to the pointer so that R13 points to the byte after
;the last byte in the grayscale table. The first instruction
;in the following loop is a decrement instruction that will
;make R13 point at the last byte in the table.

ltagsdt
DEC.W R13 ;decrease the address pointer by one byte
MOV.B #08,R9 ;Load register R9 with the number of bits to shift out

;this value will be passed to the SHIFTOUT subroutine
;R13 points to the MSB first in memory so there are 8
;bits to shift out.

8 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

TLC5941 Driver Firmware Code

MOV.W R13,R8 ;Copy address pointer to R8.The SHIFTOUT
;routine uses R8 to point to the byte to shift out.

CALL #SHIFTOUT ;call subroutine to shift out data
DEC.W R13 ;decrement pointer one byte to point to LSB byte
MOV.B #0x04,R9 ;load R9 with the number of bits in the second byte

;to shift out. Only four bits remain to be shifted
MOV.W R13,R8 ;Copy address pointer to R8. The SHIFTOUT

;routine uses R8 to point to the byte to shift out.

CALL #SHIFTOUT ;call subroutine to shift out data
DEC.W R12 ;decrement loop counter by one
JNZ ltadcdt ;jump if not zero to continue looping

BIS.B #XLAT,&P1OUT ;set the I/O pin for XLATCH high to latch
;serial data into the TLC5941

BIC.B #XLAT,&P1OUT ;set XLATCH back to zero

BIS.B #SCLK,&P1OUT ;set the I/O pin for SLCK high to
;give SCLK one extra pulse after XLATCH
;this is only required if the previous dat sent
;to the TLC5941 was dot correction information

BIS.B #SCLK,&P1OUT ;set I/O pin for SCLK back to zero

RET ;return from subroutine

;***
;SEND DOT CORRECTION DATA TO TLC5941
;***
;
;
;shift out dot correction data stored in ram to TLC5941
;clocks out as MSB of channel 15 first then works down through bytes in memory
;shifts 6 bits per LED channel or 96 bits total.
;This routine is very similar to the Grayscale routine. The DCOUT and GSOUT
;routines could be combined together for some memory space savings by
;using some flags and conditional statements.

DCOUT

BIS.B #MODE,&P1OUT ;set I/O line that is tied to the MODE pin of
;the TLC5941 pin to one to enter DC mode

MOV.W #16,R12 ;Register 12 is a loop counter. Loop through 16 LEDs.
MOV.W #Dot,R13 ;load register 13 with the starting address of the

;dot correction data stored in RAM. R13 will point to the
;byte to shift out

ADD.W #16,R13 ;Add 16 to the pointer so that R13 points to the byte after
;the last byte in the dot correction table. The first
;instruction in the following loop is a decrement instruction
;that will make R13 point at the last byte in the table.

ltadcdt
DEC.W R13 ;decrease the address pointer by one byte
MOV.B #06,R9 ;Load register R9 with the number of bits to shift out

;this value will be passed to the SHIFTOUT subroutine
;there are 6 bits to shift out

MOV.W R13,R8 ;Copy address pointer to R8.The SHIFTOUT
;routine uses R8 to point to the byte to shift out.

CALL #SHIFTOUT ;call subroutine to shift out data
DEC.W R12 ;decrement loop counter by one
JNZ ltadcdt ;jump if not zero to continue looping

BIS.B #XLAT,&P1OUT ;set the I/O pin for XLATCH high to latch
;serial data into the TLC5941

BIC.B #XLAT,&P1OUT ;set XLATCH back to zero

BIC.B #10h,&P1OUT ;set the I/O line that is tied to the MODE pin of
;the TLC5941 pin to zero to set back to
;grayscale mode

RET ;return from subroutine

;*************************************
; SHIFT DATA OUT ROUTINE

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

TLC5941 Driver Firmware Code

;*************************************
;
;clock variable number of bits to TLC5941.
;clocks out as most significant bit first then works down through byte
;r8 = address of byte containing data to shift (word length)
;r9 = number of bits 1-8 to shift out (byte length)
;r10 used for temporary storage for shifting
;
;This routine shifts out a variable number of bits from a byte
;stored in the location pointed to by R8. The data to be sent
;is stored left aligned to the most significant bit.
;For example, a 6 bit value of 0x3F would be stored as 0xFC
;with the two least significant bits set to zero.
;
;Registers R8 and R9 are used to pass parameters to this routine.
;Prior to calling this routine, R8 should contain the address of the
;byte of data to be shifted out. R9 should contain the number of bits
;that need to be shifted out.
;R9 will be used as a loop counter in this routine. The contents of R9
;will not be preserved when returning form this routine.

SHIFTOUT
MOV.B @r8,r10 ;move the byte stored in the memory location

;pointed to by register 8 into register 10

ctbit
BIC.B #SIN,&P1OUT ;clear the bit controlling SIN to zero
BIT.B #80h,R10 ;test state of the most significant bit

;of the data remaining to be shifted out
;since we shift the MSB first, the software
;looks at the MSB of R10 to decide what data
;to shift out.

JZ sdateq0 ;if the bit to shift out is a zero then skip ahead
;because SIN was previously set to zero

BIS.B #SIN,&P1OUT ;The data to shift out is a one so set the bit
;controlling SIN to a one

sdateq0
BIS.B #SCLK,&P1OUT ;set the bit controlling SCLK to a one
BIC.B #SCLK,&P1OUT ;clear the bit controlling SCLK to a zero

;the last two commands pulse the SCLK
;signal which latches the data on SIN into
;the shift register of the TLC5941

RLA.B R10 ;shift the data stored in register 10
;one bit left.The LSB of R10 will have a zero
;shifted in.

DEC.B R9 ;decrement number of bits to send
JNZ ctbit ;jump if not zero. continue until all bits are sent

RET ;return from subroutine

;--
; INTERRUPT ROUTINES
;--

;--
;ISR: Interrupt Service Routine for Timer
;--
;
;timer interrupt routine
;when the timer count reaches 4097 it will issue an
;interrupt. The processor jumps to here to service the interrupt.
;This interrupt routine toggles the bit controlling the BLANK
;pin of the TLC5941. When the BLANK line of the TLC5941,
;it resets the internal grayscale counter and starts a new
;grayscale frame.
;

BIS.B #BLANK,&P1OUT ;Toggle bit controlling BLANK
BIC.B #BLANK,&P1OUT ;signal. First high then low.
RETI ;Return from ISR

;---
; Interrupt Vectors
;---
;

10 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

4 Modified Blank Signal

5 Driving Additional LEDs

Modified Blank Signal

;this segment is used to define the interrupt vectors in memory
;

ORG 0FFFEh ; RESET Vector
DW RESET ;

ORG 0FFECh ; Timer Interrupt Vector
DW ISR ;

END

The example firmware and flow charts rely on the BLANK signal being manually toggled during a software
interrupt. Using an interrupt allows the firmware to know when the BLANK signal is toggled and the end of
a frame has been reached. This is useful when the microprocessor and software need to synchronize data
transfers to correspond with the end of a display frame. If frame synchronization is not required, then the
interrupt can be removed from the code which will free up the interrupt routine for other software functions.
The capture and compare functions of the timer can be used to generate the BLANK signal without the
need for the interrupt routine. This requires the timer to be configured slightly different than what is shown
in the example firmware. The following four lines of code replace the four lines of code listed under the
“SET UP TIMER TO MAKE BLANK SIGNAL” header in the code listing.

MOV.W #OUTMOD_3+CCIE,&CCTL0 ; CCR1 toggle/set
MOV.W #4098,CCR0
MOV.W #4097,CCR1
MOV.W #TASSEL_2+MC_1,&TACTL ; turn on PWM – SMCLK, up mode

This code configures the counter timer to automatically toggle the BLANK line once the counter reaches
4097. With this code, the interrupts can be left disabled if desired.

The firmware is configured to drive a single TLC5941 with 16 LEDs. However, several TCL5941s can be
cascaded or daisy-chained together to drive a large number of LEDs. The TLC5941 data sheet shows
how to daisy-chain several TLC5941s together. The loop counters and RAM address calculations of the
GSOUT and DCOUT subroutines can be changed to accommodate any number of daisy- chained
TLC5941s. The only limitation is the speed of the serial communications versus the desired frame rate of
the display and the amount of RAM to store the dot correction and grayscale data.

The firmware example requires little EEPROM space in the MSP430. The dot correction and grayscale
data tables require 48 bytes of RAM per TLC5941. The MSP430F427 was selected for this example
implementation because it has 1 KB of RAM available to store the dot correction and grayscale data. The
1 KB of RAM is enough to store data for up to 21 TLC5941s or 336 LEDs.

The example implementation uses a 2-MHz system clock. This frequency is generated by the MSP430
from an external 32.768-kHz quartz crystal. The selection of a 32.768-kHz crystal and a 2-MHz system
clock allow for the possibility of the MSP430 to drive an optional LCD display. If an LCD display is not
required, then the system clock speed could be increased to 8 MHz which is the highest capability of the
MSP430F427. Increasing the clock speed would speed the firmware execution and thus speed the
communications between the MSP430 and the TLC5941 and thus increase the frame rate.

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

6 Schematics
Schematics

Figure 5. MSP430 Schematic

12 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

+

Schematics

Figure 6. TLC5941 and Power Schematic

SLVA267A–Mar 2007–Revised Mar 2008 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

www.ti.com

7 Conclusion

7.1 References

Conclusion

The TLC5941 has a simple serial interface to accept grayscale and dot correction data for driving up to 16
LEDs. The simple serial interface can be driven by virtually any microcontroller, FPGA, or digital signal
processor. This application report shows one hardware and firmware implementation to drive a display
comprised of 16 LEDs.

1. TLC5941, 16-Channel LED Driver With Dot Correction and Grayscale PWM Control data sheet
(SLVS589)

2. MSP430F42x, Mixed Signal Microcontroller data sheet (SLAS421)

14 Grayscale and Dot-Corrected LED Display Using TLC5941 and MSP430F427 SLVA267A–Mar 2007–Revised Mar 2008
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SLVS589
http://www-s.ti.com/sc/techlit/SLAS421
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLVA267A

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 TLC5941 Driver Implementation Using the MSP430F427
	3 TLC5941 Driver Firmware Code
	4 Modified Blank Signal
	5 Driving Additional LEDs
	6 Schematics
	7 Conclusion
	7.1 References

