

## Six-Channel Single-Chip Electronic Volume Control System

## Preliminary



## Overview

The LC75347E is a 6-channel 97 -step electronic volume control system IC that provides a 2-channel input selector, bass and treble tone controls, external output ports, and a zero-cross volume switching function.

## Functions

- Volume: 0 to -95 dB (in 1 dB steps) and $-\infty$, for a total of 97 positions.
Each of the six input channels can be controlled independently.
- Bass and treble: Each band can be controlled over a $\pm 12 \mathrm{~dB}$ range in 2 dB steps.
The bass control provides peaking characteristics and the treble control provides shelving characteristics.
- Selector: 2-channel input selector
- Zero cross: Provides independent zero-cross detection for each of the 6 channels and a timer overflow detection circuit.
- External muting: Mute in/mute out function using zerocross detection and dedicated pins.
- External output ports: Provides 4 n-channel transistor open-drain outputs.


## Features

- Built-in buffer amplifiers reduce the number of external components to a minimum.
- Fabricated in a silicon-gate CMOS process for minimal noise generation from internal switches.
- Built-in analog ground reference voltage generator circuit
- All settings are controlled by serial data transmitted over a CCB interface.


## Package Dimensions

unit: mm

## 3148A-QIP44M



- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

## Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| Parameter | Symbol | Pin | Conditions | Ratings | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum supply voltage | $V_{\text {DD }}$ max | $\mathrm{V}_{\mathrm{DD}}$ |  | 11 | V |
| Maximum input voltage | $\mathrm{V}_{\text {IN }} 1$ max | CE, DI, CL, MUTE OUTP1 to OUTP4 |  | -0.3 to +11 | V |
|  | $\mathrm{V}_{\text {IN }} 2$ max | FL, FR, RL, RR, C, SBW, FLTON, FRTON, FLIN, FRIN |  | $\mathrm{V}_{S S}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$ |  |
| Output current | Iout | OUTP1 to OUTP4 |  | 0 to 1 | mA |
| Allowable power dissipation | Pdmax |  | $\begin{aligned} & \mathrm{Ta} \leq 85^{\circ} \mathrm{C} \\ & \text { *1. When mounted on a PCB } \end{aligned}$ | 600 | mW |
| Operating temperature | Topr |  |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tstg |  |  | -50 to +125 | ${ }^{\circ} \mathrm{C}$ |

*1: PCB dimensions: $76.1 \times 114.3 \times 1.6 \mathrm{~mm}$, PCB materials: glass epoxy

## Allowable Operating Ranges at $\mathrm{Ta}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

| Parameter | Symbol | Pin | Conditions | Ratings |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | min | typ | max |  |
| Supply voltage | $V_{D D}$ | $\mathrm{V}_{\mathrm{DD}}$ |  | 4.5 |  | 10.5 | V |
| High-level input voltage | $\mathrm{V}_{\mathrm{IH}}$ | CL, DI, CE, MUTE OUTP1 to OUTP4 |  | 2.5 |  | 10.5 | V |
| Low-level input voltage | VIL | CL, DI, CE, MUTE | $7.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 10.5$ | $\mathrm{V}_{\text {SS }}$ |  | 0.8 | V |
|  |  |  | $4.5 \leq \mathrm{V}_{\mathrm{DD}}<7.5$ | $\mathrm{V}_{\text {SS }}$ |  | 0.3 |  |
| Input amplitude | $\mathrm{V}_{\mathrm{IN}}$ | FL, FR, RL, RR, C, SBW, FLTON, FRTON, FLIN, FRIN |  | VSS |  | $V_{\text {DD }}$ | Vp-p |
| Input pulse width | tøW | CL |  | 1 |  |  | $\mu \mathrm{s}$ |
| Setup time | tsetup | CL, DI, CE |  | 1 |  |  | $\mu \mathrm{s}$ |
| Hold time | thold | CL, DI, CE |  | 1 |  |  | $\mu \mathrm{s}$ |
| Operating frequency | fopg | CL |  |  |  | 500 | kHz |

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

| Parameter | Symbol | Pin | Conditions | Ratings |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | min | typ | max |  |
| [Volume and Selector Blocks] |  |  |  |  |  |  |  |
| Input resistance | Rin | FL, FR, RL, RR, C, SBW, FLTON, FRTON, FLIN, FRIN |  |  | 50 |  | $\mathrm{k} \Omega$ |
| [Treble Band Equalizer Control Block] |  |  |  |  |  |  |  |
| Control range | Geq |  | max. boost/cut | $\pm 10$ | $\pm 12$ | $\pm 14$ | dB |
| Step resolution | Estep |  |  | 1 | 2 | 3 | dB |
| Internal feedback resistance | Rfeed |  |  |  | 51.7 |  | $\mathrm{k} \Omega$ |
| [Bass Band Equalizer Control Block] |  |  |  |  |  |  |  |
| Control range | Geq |  | max. boost/cut | $\pm 10$ | $\pm 12$ | $\pm 14$ | dB |
| Step resolution | Estep |  |  | 1 | 2 | 3 | dB |
| Internal feedback resistance | Rfeed |  |  |  | 38.9 |  | $\mathrm{k} \Omega$ |
| [Output Port Block] |  |  |  |  |  |  |  |
| Low-level output voltage | V0 | OUTP1 to OUTP4 | $\mathrm{Rh}=10 \mathrm{k} \Omega, \mathrm{Vd}=5 \mathrm{~V}$ |  |  | 0.5 | V |

Continued on next page

Continued from preceding page.

| Parameter | Symbol | Conditions | Ratings |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | min | typ | max |  |
| [Overall Characteristics] |  |  |  |  |  |  |
| Total harmonic distortion (RL, RR, C and SBW inputs, direct output) | THD1 | $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}, 80 \mathrm{kHz} \text { LPF }$ Flat overall |  | 0.001 | 0.01 | \% |
| Total harmonic distortion (FL and FR inputs, direct output) | THD2 | $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}, 80 \mathrm{kHz}$ LPF <br> Flat overall <br> FL and FR selected, direct output |  | 0.002 | 0.01 |  |
| Total harmonic distortion (FLTON and FRTON inputs, FLOUT and FROUT outputs) | THD3 | $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}, 80 \mathrm{kHz}$ LPF Flat overall FLTON and FRTON selected, output after passing though tone controls. |  | 0.003 | 0.01 |  |
| Output noise voltage (RL, RR, C and SBW inputs, direct output) | VN1 | 80 kHz LPF, $\mathrm{Rg}=1 \mathrm{k} \Omega$ <br> All controls flat overall |  | 6 |  | $\mu \mathrm{V}$ |
|  |  | A-WIGHT, $\mathrm{Rg}=1 \mathrm{k} \Omega$ All controls flat overall |  | 2.5 |  |  |
| Output noise voltage (FL and FR inputs, direct output) | VN2 | 80 kHz LPF, $\mathrm{Rg}=1 \mathrm{k} \Omega$ <br> All controls flat overall |  | 7 |  |  |
|  |  | A-WIGHT, Rg $=1 \mathrm{k} \Omega$ All controls flat overall |  | 3 |  |  |
| Output noise voltage (FLTON and FRTON inputs, FLOUT and FROUT outputs) | VN3 | 80 kHz LPF, $\mathrm{Rg}=1 \mathrm{k} \Omega$ <br> All controls flat overall |  | 9 |  |  |
|  |  | A-WIGHT, Rg $=1 \mathrm{k} \Omega$ All controls flat overall |  | 4 |  |  |
| Characteristics at maximum attenuation | Vomin | $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}, 80 \mathrm{kHz} \text { LPF }$ <br> All controls flat overall |  | -95 |  | dB |
| Crosstalk | CT | $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Rg}=1 \mathrm{k} \Omega$ <br> All controls flat overall | 80 |  |  | dB |
| Current drain | $I_{\text {DD }}$ | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}=+9 \mathrm{~V}$ |  | 38 |  | mA |
| High-level input current | $\mathrm{IIH}^{\text {H }}$ | CL, DI, CE, MUTE: $\mathrm{V}_{\text {IN }}=10.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10.5 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| Low-level input current | ILL | CL, DI, CE, MUTE: $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10.5 \mathrm{~V}$ | -10 |  |  | $\mu \mathrm{A}$ |

## Pin Assignment



NC: No Connect

## Equivalent Circuit/Application Circuit Example



## Control System Timing and Data Format

The stipulated serial data must be applied to the CL, DI, and CE pins to control the LC75347E. The data consists of 80 bits, of which 8 bits are address and 72 bits are data.


- Address Code (B0 to A3)

This IC has an 8-bit address code and can be used with the same specifications as other Sanyo CCB serial bus ICs.
Address code
(LSB) (82HEX)

| B0 | B1 | B2 | B3 | A0 | A1 | A2 | A3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |

- Control Code Allocations

Volume Control

| D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | SBW setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | RR setting |
| D16 | D17 | D18 | D19 | D20 | D21 | D22 | D23 | RL setting |
| D24 | D25 | D26 | D27 | D28 | D29 | D30 | D31 | C setting |
| D32 | D33 | D34 | D35 | D36 | D37 | D38 | D39 | FRIN setting |
| D40 | D41 | D42 | D43 | D44 | D45 | D46 | D47 | FLIN setting |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 dB |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 dB |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 dB |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -3 dB |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -4dB |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -5dB |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | -6 dB |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | -7 dB |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -8 dB |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -9 dB |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $-10 \mathrm{~dB}$ |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $-11 \mathrm{~dB}$ |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | $-12 \mathrm{~dB}$ |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | $-13 \mathrm{~dB}$ |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | $-14 \mathrm{~dB}$ |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -15 dB |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -16 dB |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | $-17 \mathrm{~dB}$ |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $-18 \mathrm{~dB}$ |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $-19 \mathrm{~dB}$ |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | -20 dB |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | -21 dB |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | -22 dB |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | -23 dB |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | -24 dB |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | -25 dB |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | -26 dB |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | -27 dB |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | -28 dB |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | -29 dB |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | $-30 \mathrm{~dB}$ |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | -31 dB |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -32 dB |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | $-33 \mathrm{~dB}$ |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | $-34 \mathrm{~dB}$ |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | $-35 \mathrm{~dB}$ |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | -36 dB |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | -37 dB |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | $-38 \mathrm{~dB}$ |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | $-39 \mathrm{~dB}$ |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | $-40 \mathrm{~dB}$ |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | $-41 \mathrm{~dB}$ |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | $-42 \mathrm{~dB}$ |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | -43 dB |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | $-44 \mathrm{~dB}$ |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | $-45 \mathrm{~dB}$ |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | $-46 \mathrm{~dB}$ |

Continued on next page.

Continued from preceding page.

| D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | SBW setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | RR setting |
| D16 | D17 | D18 | D19 | D20 | D21 | D22 | D23 | RL setting |
| D24 | D25 | D26 | D27 | D28 | D29 | D30 | D31 | C setting |
| D32 | D33 | D34 | D35 | D36 | D37 | D38 | D39 | FRIN setting |
| D40 | D41 | D42 | D43 | D44 | D45 | D46 | D47 | FLIN setting |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | -47 dB |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | $-48 \mathrm{~dB}$ |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | $-49 \mathrm{~dB}$ |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | $-50 \mathrm{~dB}$ |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | $-51 \mathrm{~dB}$ |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | $-52 \mathrm{~dB}$ |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | $-53 \mathrm{~dB}$ |
| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | -54 dB |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | $-55 \mathrm{~dB}$ |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | -56 dB |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | -57 dB |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | $-58 \mathrm{~dB}$ |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | $-59 \mathrm{~dB}$ |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | $-60 \mathrm{~dB}$ |
| 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | -61 dB |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | -62 dB |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | -63 dB |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -64 dB |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -65 dB |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -66 dB |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | $-67 \mathrm{~dB}$ |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | $-68 \mathrm{~dB}$ |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | -69 dB |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | -70 dB |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | -71 dB |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | -72 dB |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | $-73 \mathrm{~dB}$ |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | -74 dB |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | -75 dB |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | -76 dB |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | $-77 \mathrm{~dB}$ |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | $-78 \mathrm{~dB}$ |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | -79 dB |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | $-80 \mathrm{~dB}$ |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | -81 dB |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | -82 dB |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | -83 dB |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -84 dB |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | -85 dB |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | -86 dB |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | $-87 \mathrm{~dB}$ |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | -88 dB |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | -89 dB |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $-90 \mathrm{~dB}$ |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | -91 dB |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | -92 dB |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | -93 dB |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | $-94 \mathrm{~dB}$ |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | -95 dB |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | $-\infty$ |

Zero cross control

| D48 | SBW setting |  |
| :---: | :---: | :---: |
| D49 | RR setting |  |
| D50 | RL setting | Operation |
| D51 | C setting |  |
| D52 | FRIN setting |  |
| D53 | FLIN setting |  |
| 0 | Zero cross operation |  |
| 1 | Zero cross operation is disabled (This setting takes effect on the fall of CE.) |  |

Tone Switch Selection

| D54 | D55 | Setting |
| :---: | :---: | :--- |
| 0 | 0 | The analog switches are set so that FL and FR bypass the tone circuit. |
| 1 | 0 | The analog switches are set so that FL is connected to, and FR bypass the tone circuit. |
| 0 | 1 | The analog switches are set so that FR is connected to, and FL bypass the tone circuit. |
| 1 | 1 | The analog switches are set so that FL and FR are connected to the tone circuit. |

Bass

| D56 | D57 | D58 | D59 | FLTON setting <br> FRTON setting |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | +12 dB |
| 1 | 0 | 1 | 0 | +10 dB |
| 0 | 0 | 1 | 0 | +8 dB |
| 1 | 1 | 0 | 0 | +6 dB |
| 0 | 1 | 0 | 0 | +4 dB |
| 1 | 0 | 0 | 0 | +2 dB |
| 0 | 0 | 0 | 0 | 0 dB |
| 1 | 0 | 0 | 1 | -2 dB |
| 0 | 1 | 0 | 1 | -4 dB |
| 1 | 1 | 0 | 1 | -6 dB |
| 0 | 0 | 1 | 1 | -8 dB |
| 1 | 0 | 1 | 1 | -10 dB |
| 0 | 1 | 1 | 1 | -12 dB |

Treble

| D60 | D61 | D62 | D63 | FLTON setting <br> FRTON setting |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | +12 dB |
| 1 | 0 | 1 | 0 | +10 dB |
| 0 | 0 | 1 | 0 | +8 dB |
| 1 | 1 | 0 | 0 | +6 dB |
| 0 | 1 | 0 | 0 | +4 dB |
| 1 | 0 | 0 | 0 | +2 dB |
| 0 | 0 | 0 | 0 | 0 dB |
| 1 | 0 | 0 | 1 | -2 dB |
| 0 | 1 | 0 | 1 | -4 dB |
| 1 | 1 | 0 | 1 | -6 dB |
| 0 | 0 | 1 | 1 | -8 dB |
| 1 | 0 | 1 | 1 | -10 dB |
| 0 | 1 | 1 | 1 | -12 dB |

Tone Mode

| D64 | D65 |  |
| :---: | :---: | :--- |
| 0 | 0 | FLTON and FRTON not changed |
| 1 | 0 | Only FLTON changed |
| 0 | 1 | Only FRTON changed |
| 1 | 1 | Both FLTON and FRTON changed |

## Output Ports

|  | Setting |
| :---: | :--- |
| D66 | OUTP1 (VSS: 1, OPEN: 0) |
| D67 | OUTP2 (VSS: 1, OPEN: 0) |
| D68 | OUTP3 (VSS: 1, OPEN: 0) |
| D69 | OUTP4 (VSS: 1, OPEN: 0) |

## Test Mode

| D70 | D71 | Setting |
| :---: | :---: | :--- |
| 0 | 0 | These bits are used for IC testing. They must be set to 0 during normal operation. |

## Pin Functions

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Pin \& Function \& Notes \\
\hline \[
\begin{gathered}
7 \\
24 \\
20 \\
18 \\
22 \\
16
\end{gathered}
\] \& \begin{tabular}{l}
FLIN \\
FRIN \\
RL \\
RR \\
C \\
SBW
\end{tabular} \& - Volume control inputs \&  \\
\hline \[
\begin{gathered}
9 \\
10 \\
11 \\
12 \\
13 \\
14
\end{gathered}
\] \& \begin{tabular}{l}
FLOUT \\
FROUT \\
COUT \\
RLOUT \\
RROUT \\
SBWOUT
\end{tabular} \& - Volume control outputs \&  \\
\hline \[
\begin{gathered}
28 \\
26 \\
\hline \\
\hline 6 \\
25
\end{gathered}
\] \& FL FR SELL SELR \& - Selector volume inputs \&  \\
\hline 36 \& TIM \& \begin{tabular}{l}
- Zero cross circuit timer \\
If a zero cross is not detected during the period from the completion of the data transfer to the point the timer overflows, the control data is enabled forcibly.
\end{tabular} \&  \\
\hline 23 \& VREF \& - \(0.5 \times \mathrm{V}_{\mathrm{DD}}\) voltage generator used for analog ground A capacitor of several ten \(\mu \mathrm{F}\) must be connected between VREF and \(\mathrm{V}_{\text {SS }}\) to minimize power supply ripple. \&  \\
\hline 41 \& \(\mathrm{V}_{\text {SS }}\) \& - Ground \& \\
\hline 37 \& \(V_{\text {D }}\) \& - Power supply \& \\
\hline 40

39

38 \& CE \& | - Chip enable |
| :--- |
| Data is written to the internal latch when this pin goes from high to low. The analog switches operate at that time. Data transfer is enabled when CE is high. |
| - Serial data and clock inputs for the control data. | \&  <br>

\hline
\end{tabular}

Continued on next page

Continued from preceding page.

| Pin No. | Pin | Function | Notes |
| :---: | :---: | :---: | :---: |
| 35 | MUTE | - External control mute pin <br> Applying the $\mathrm{V}_{\mathrm{SS}}$ level to this pin forcibly sets the volume level for all channels to $-\infty$. |  |
| 34 <br> 33 <br>  <br> 3 <br> 5 <br> 31 <br> 39 | FLTON <br> FRTON <br> BASS11 <br> BASS13 <br> BASS21 <br> BASS23 | - Tone control block inputs <br> After passing through the tone control circuit, the audio signals are output to the selector amplifier. <br> - Connections for the capacitors that form the bass filters |  |
| $\begin{gathered} 4 \\ 30 \end{gathered}$ | BASS12 <br> BASS22 | - Connections for the resistors that form the bass filters |  |
| $\begin{gathered} 2 \\ 32 \end{gathered}$ | $\begin{aligned} & \text { TRE1 } \\ & \text { TRE2 } \end{aligned}$ | - Connections for the capacitors that form the treble filters |  |
| $\begin{gathered} 1 \\ 44 \\ 43 \\ 42 \end{gathered}$ | OUTP1 <br> OUTP2 <br> OUTP3 <br> OUTP4 | - N-channel transistor open-drain outputs When off, these outputs are in the high-impedance state. |  |
| $\begin{gathered} 8 \\ 15 \\ 17 \\ 19 \\ 21 \\ 27 \end{gathered}$ | NC | - Unused pins <br> These pins must either be left open or connected to $\mathrm{V}_{\mathrm{SS}}$. |  |

## Internal Equivalent Circuits

- Selector, Bass/Treble, VREF Amplifier, Output Ports


For boost, set switches 1 and 3 to the on position, for cut, set switches 2 and 4 to the on position, and for 0 dB , set switches 2,3 and 0 dB switch to the on position.


- Volume Block

Total resistance: $50 \mathrm{k} \Omega$ (Parallel resistors)


## LC75347E

## Calculating the Equalizer External Component Values

1. Bass Band Circuit

Here we show the equivalent circuit and the formulas for calculating the capacitor and resistor values for a center frequency of 100 Hz .

- Bass band equivalent circuit

- Sample calculation

Specifications: Center frequency, $\mathrm{f}_{0}=100 \mathrm{~Hz}$
Gain at maximum boost: $\mathrm{G}=12 \mathrm{~dB}$
Assume R1 $=27 \Omega, \mathrm{R} 2=38,834 \Omega$, and $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}$.
(1) Determine R3 from the fact that $\mathrm{G}=12 \mathrm{~dB}$.

$$
\begin{aligned}
& \mathrm{G}_{+12 \mathrm{~dB}}=20 \times \mathrm{LOG}_{10}\left(1+\frac{\mathrm{R} 2}{2 \mathrm{R} 3+\mathrm{R} 1}\right) \\
& \mathrm{R} 3=\frac{\left|\frac{\mathrm{R} 2}{\left(10^{\mathrm{G} / 20}-1\right)}-\mathrm{R} 1\right|}{2}=\frac{\frac{38834}{(3.981-1)}-27}{2} \neq 6500 \Omega
\end{aligned}
$$

(2) Determine C from the fact that the center frequency, $\mathrm{f}_{0}$, is 100 Hz .

$$
\begin{aligned}
& \mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{(\mathrm{R} 1+\mathrm{R} 2) \mathrm{R} 3 \mathrm{C} 1 \mathrm{C} 2}} \\
& \mathrm{C}=\frac{1}{2 \pi \mathrm{f}_{0} \sqrt{\text { (R1+R2) R} 3}}=\frac{1}{2 \pi \times 100 \sqrt{(38834+27) \times 6500}} \neq 0.1 \mu \mathrm{~F}
\end{aligned}
$$

(3) Determine Q.

$$
\mathrm{Q}=\frac{(\mathrm{R} 1+\mathrm{R} 2) \mathrm{R} 3}{2 \mathrm{R} 3+\mathrm{R} 1} \cdot \frac{1}{\sqrt{(\mathrm{R} 1+\mathrm{R} 2) \mathrm{R} 3}} \neq 1.22
$$

## LC75347E

2. Treble Band Circuit

The treble band circuit can provide shelving characteristics. Here we present the equivalent circuit when the circuit is providing boost and the circuit calculation formulas.

- Treble band equivalent circuit

- Sample calculation

Specifications: Set frequency, $f=26,000 \mathrm{~Hz}$
Gain at maximum boost: $\mathrm{G}_{+12 \mathrm{~dB}}=12 \mathrm{~dB}$
Assume $\mathrm{R} 1=12,840 \Omega$ and $\mathrm{R} 2=38,834 \Omega$.
Substituting the above values into the following formulas allows us to solve for C .

$$
\mathrm{G}=20 \times \operatorname{LOG}_{10}\left(1+\frac{\mathrm{R} 2}{\sqrt{\mathrm{R} 1^{2}+(1 / \omega \mathrm{C})^{2}}}\right)
$$

$$
\mathrm{C}=\frac{1}{2 \pi \mathrm{f} \sqrt{\left(\frac{\mathrm{R} 2}{10^{\mathrm{G} / 20}-1}\right)^{2}-\mathrm{R} 1^{2}}}
$$

$$
=\frac{1}{2 \pi 26000 \sqrt{\left(\frac{38834}{3.98-1}\right)^{2}-12840^{2}}} \neq 2700(\mathrm{pF})
$$

## Usage Notes

1. Data Transmission after Power is First Applied

The states of the internal analog switches are undefined when power is first applied. Applications should set up the initial data immediately after power is applied (after $\mathrm{V}_{\mathrm{DD}}$ rises above 4.5 V ). Applications should also mute the outputs until the data has been set up and the outputs are stable.
To establish the states of the internal latches, set the bits D64 and D65 to 1 in the first data transferred after power is first applied.
2. Zero Cross Switching Control

Zero cross switching is used by setting up data in which the zero cross control bits specify zero cross detection mode (by setting bits D48 to D53 to 0) and transfer that data. Since these control bits are latched first, immediately after the data is transferred, that is, on the fall of the CE signal, zero cross control can be performed with a single data transfer operation when updating the volume control settings. If the zero cross control bits specify zero cross detection disabled mode (by setting bits D48 to D53 to 1), the volume is switched on the fall of the CE signal at the end of the data transfer.
3. Zero Cross Timer Setting

When the input signal is less than the detection sensitivity of the zero cross comparator, or if only a low-frequency signal is being input, the state where the IC does not detect a zero cross will continue and the data will not be latched. The zero cross timer allows applications to set a time at which data will be latched forcibly if the state where no zero cross is detected continues.

For example, to set a time of 25 ms :
$\mathrm{T}=0.69 \mathrm{CR}$
Since the internal pull-up resistor is about $1 \mathrm{M} \Omega$ :
$\mathrm{C}=\frac{25 \times 10^{-3}}{0.69 \times 1.0 \times 10^{6}} \fallingdotseq 0.036 \mu \mathrm{~F}$
Applications usually set a time in the range 10 to 50 ms .
4. Notes on Serial Data Transfer

Cover the CL, DI, and CE pin signal lines with the ground pattern, or use shielded cables for these signals so that the high-frequency digital signals transmitted on these lines do not enter the analog signal system.




Distortion vs. Supply Voltage (2)


Distortion vs. Frequency Characteristics (1)



Distortion vs. Supply Voltage (1)


Bass Tone Control Characteristics


$\square$ Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2003. Specifications and information herein are subject to change without notice.

