LOW POWER DUAL OPERATIONAL AMPLIFIERS

General Description

The MB358 consists of two independent, high gains and internally frequency compensated operational amplifiers; it is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. Typical applications include transducer amplifiers, DC gain blocks and most conventional operational amplifier circuits.

The MB358 is compatible with industry standard 358. MB358 has more stringent input offset voltage than MB358.

The MB358 are available in two industry standard packages: DIP-8 and SOP-8.

Features

Internally Frequency Compensated for Unity Gain

Large Voltage Gain: 100dB (Typical) Low Input Bias Current: 20nA (Typical) Low Input Offset Voltage: 2mV (Typical) Low Supply Current: 0.5mA (Typical)

Wide Power Supply Voltage: Single Supply: 3V to 36V Dual Supplies: ±1.5V to ±18V

Input Common Mode Voltage Range Includes

Ground

Large Output Voltage Swing: 0V to VCC-1.5V

1

Applications

Battery Charger Cordless Telephone Switching Power Supply

CBC Microelectronics http://www.cbcv.net

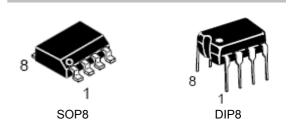


Figure 1: Package Types of MB358

Pin Configuration (DIP8 / SOP8)

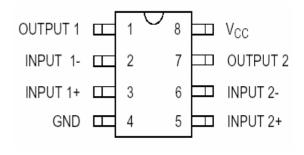
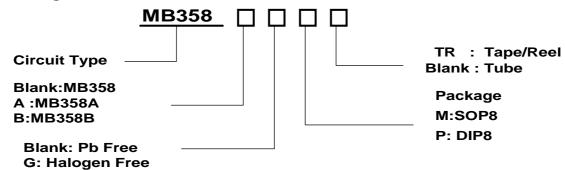



Figure 2: Pin Configuration of MB358 (Top View)

Ordering Information

		Part Number		N	Packing		
Package	Condition	Pb-free	Halogen-Free	Pb-free	Halogen-Free	Type	
SOP-8	1.5mV	MB358AM	MB358AGM	358AM	358AGM	Tube	
30F-6	1.5mV	MB358AMTR	MB358AGMTR	358AM	358AGM	Tape & Reel	
DIP-8	1.5mV	MB358AP	MB358AGP	MB358AP	MB358AGP	Tube	
SOP-8	3mV	MB358BM	MB358BGM	358BM	358BGM	Tube	
	3mV	MB358BMTR	MB358BGMTR	358BM	358BGM	Tape & Reel	
DIP-8	3mV	MB358BP	MB358BGP	MB358BP	358BGP	Tube	
SOP-8	5mV	MB358M	MB358GM	358M	358GM	Tube	
	5mV	MB358MTR	MB358GMTR	358M	358GM	Tape & Reel	
DIP-8	5mV	MB358P	MB358GP	MB358P	MB358GP	Tube	

Typical Application

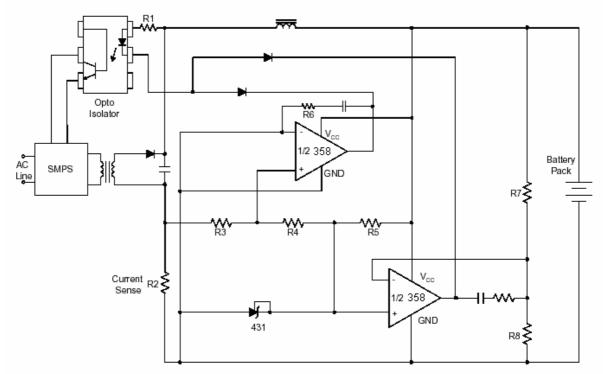


Figure 3: Battery Charger

Typical Application

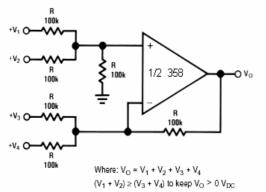


Figure 4: DC Summing Amplifier

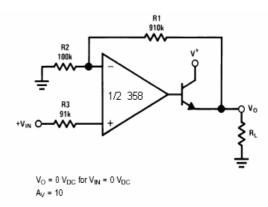
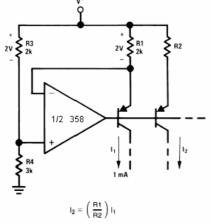



Figure 5: Power Amplifier

Figure 6: Fixed Current Sources

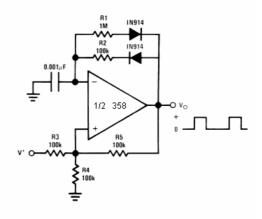


Figure 7: Pulse Generator

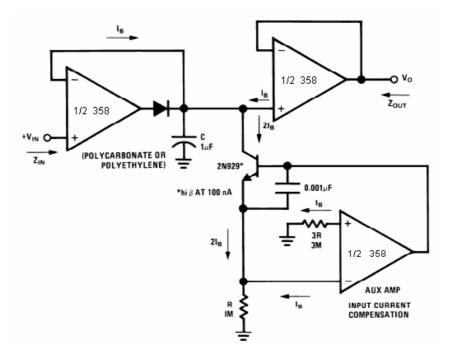
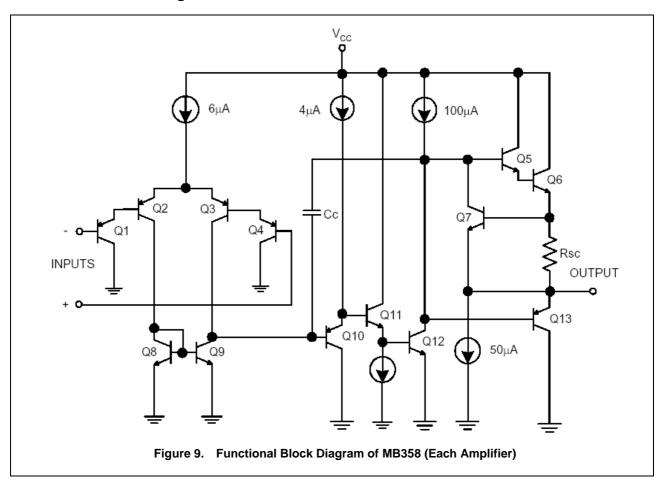



Figure 8: Low Drift Detector

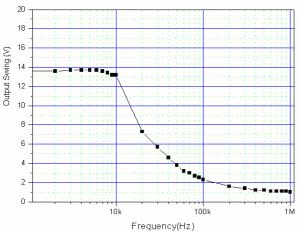
Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	V
Differential Input Voltage	VID	40	V
Input Voltage	Vıc	-0.3 to 40	V
Dower Dissipation	PD	DIP-8: 830	mW
Power Dissipation	עץ	SOP-8: 550	mW
Storage Temperature Range	Tstg	-50 to 150	
Lead Temperature (Soldering,10 Seconds)		260	

Note1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

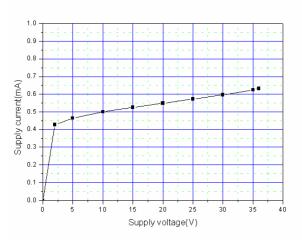
Recommended Operating Conditions


Parameter	Symbol	Min	Max	Unit	
Supply Voltage	Vcc	3	36	V	
Ambient Operating Temperature	TA	-20	+85		

Electrical Characteristics

Vcc = 5V, GND = 0V, TA = 25 unless otherwise specified.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Innut Offeet Velters	Vio	Vo=1.4V,Rs=0 Vcc=5V to 30V	MB358A			1.5	mV
Input Offset Voltage			MB358B			3.0	
Average Temperature Coefficient of Vio	Vio/ T	Ta= -20 to 85			7.0		μ V/
Input Bias Current	IBIAS	lin+ or lin-, V	CM=0V		20	200	nA
Input Offset Current	lio	IIN+ - IIN-, VCM=0V			5	35	nA
Input Common Mode Voltage Range	VIR	Vcc=30V		0		Vcc- 1.5	V
Supply Current	Icc	Ta=-20 to 85	,Vcc=30V		0.9	2.0	mA
Supply Culterit	100	Ta=-20 to 85	,Vcc=5V		0.6	1.2	mA
Large Signal Voltage Gain	G۷	Vcc=15V,Vo=1V to 11V RL≥2KΩ		85	100		dB
Common Mode Rejection Ratio	CMRR	DC,Vcm=0 to (Vcc-1.5)V		60	70		dB
Power Supply Rejection Ratio	PSRR	Vcc=5V to 30V		70	100		dB
Channel Separation	CS	f=1kHz to 20kHz			-120		dB
Output Source Current	ISOURCE	V+=1V,V-=0V,Vcc=15V Vo=2V		20	40		mA
Output Sink Current	Isink	V+=0V,V-=1V,Vcc=15V Vo=2V		10	15		mA
·	ISINK	V+=0V,V-=1V,Vcc=15V Vo=0.2V		12	50		μΑ
Output Short circuit current to Ground	Isc	Vcc=15V			40	60	mA
	Voн	Vcc=30V, RL=2KΩ		26			V
Output Voltage Swing	VON	Vcc=30V, RL=10KΩ		27	28		V
	Vol	Vcc=5V, RL	=10KΩ		5	20	mV


Typical Performance Characteristics

12 (S) 10 90 0 0.1 1 0 10 Output Source Current (mA)

Figure 10: Large Frequency Response

Figure 11: Output Current Sourcing

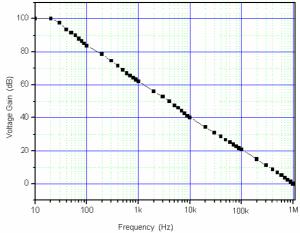
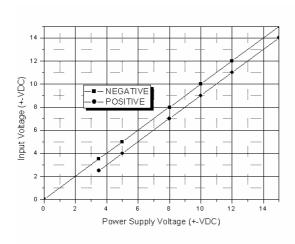



Figure 12: Supply Current

Figure 13: Open Loop Frequency Response

Typical Performance Characteristics (Continued)

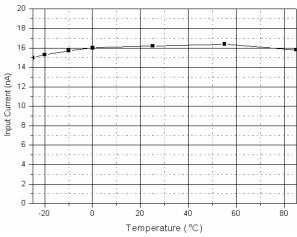


Figure 14: Input Voltage Range

Figure 15: Input Bias Current

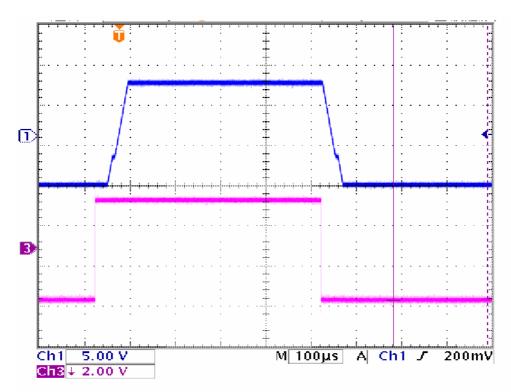
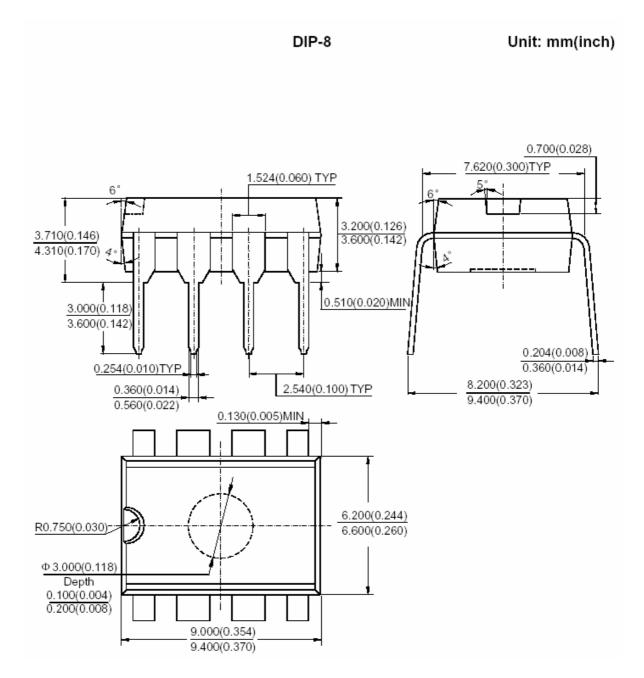
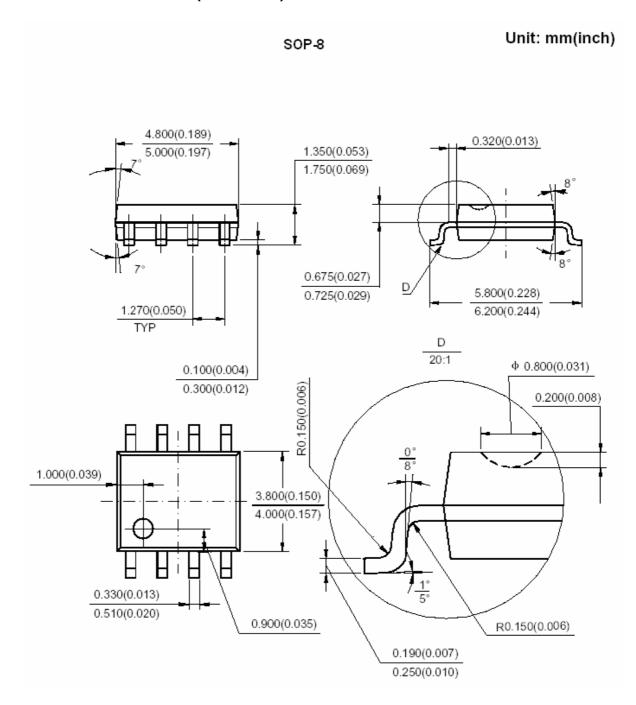




Figure 16: Voltage Follower Pulse Response

Mechanical Dimensions

Mechanical Dimensions (Continued)

IMPORTANT NOTICE

CBC Microelectronics Co., LTD reserves the right to make changes without further notice to any products or specifications herein. CBC Microelectronics Co., LTD does not assume any responsibility for use of any its products for any particular purpose, nor does CBC Microelectronics Co., LTD assume any liability arising out of the application or use of any its products or circuits. CBC Microelectronics Co., LTD does not convey any license under its patent rights or other rights nor the rights of others.